Name \qquad Date \qquad Period \qquad

Worksheet 1.5-Continuity on Intervals \& IVT

Show all work. No Calculator (unless stated otherwise)

Short Answer

1. Let $f(x)=\left\{\begin{array}{ll}x^{2}, & x \leq 1 \\ x^{2}-2 x-1, & 1<x<3 . \\ 4, & x \geq 3\end{array}\right.$.
(a) Sketch a graph of $f(x)$.

(b) Based on the function above, list the largest intervals on $x \in(-\infty, \infty)$ for which $f(x)$ is continuous. f is continuous on $(-\infty, 1] \cup(1,3) \cup[3, \infty)$
(c) Find a number b such that $f(x)$ is continuous in $(-\infty, b]$ but not in $(-\infty, b+1)$. $b=1$ cont. on $(-\infty, 1]$ lout $\operatorname{not}(-\infty, 2)$

Note: auy $b \in(0,1]$
(d) Find all numbers a and b such that $f(x)$ is continuous in (a, b) but not in $(a, b]$.

$$
\begin{aligned}
& \text { any } a, a \in[1,3) \\
& \text { and } b, b=3
\end{aligned}
$$

(e) Find the least number a such that $f(x)$ is continuous in $[a, \infty)$.

$$
a=3
$$

2. A toy car travels on a straight path. During the time interval $0 \leq t \leq 60$ seconds, the toy car's velocity v, measured in feet per second, is a continuous function. Selected values are given below.

$t(\mathrm{sec})$	0	15	25	30	35	50	60
$v(t)$ $(\mathrm{ft} / \mathrm{sec})$	-10	-15	-10	-7	-5	0	13

For $0<t<60$, must there be a time t when $v(t)=-2$? Justify.
Given $u(t)$ is a cont. $f_{x n}$, thesefore $v(t)$ cont. $\forall x \in[35,50]$
$v(35)=-5 \quad v(50)=0$
Since $-5 \leq-2 \leq 0$ \& $v(t)$ cont. $\forall X \in[35,50]$.
according to the IVT there upusts a $\operatorname{tE}(35,50)$ such that
$v(t)=-2$
3. The graph of f is given below, and has the property of $\lim _{x \rightarrow 4^{-}} f(x)=\infty$

(a) Can the IVT be used to prove that $f(x)=31415926$ somewhere on the interval $x \in[2,4]$? Why or why not? Will, in fact, $f(x)=31415926$ on this interval?
Since x is not cont. on $[2,4]$ the IVT cannot be used
(b) State the largest intervals for which the given graph of f is continuous.
f is cont. on $[-4,-2) \cup(-2,2) \cup[2,4) \cup(4,6) \cup(6,8)$
4. For the function $f(x)=\left\{\begin{array}{ll}(x-2)^{2}, & x=4 \\ 5, & 4<x \leq 10\end{array}\right.$. Find $f(4)$ and $f(10)$. Does the IVT guarantee a y value u on $4 \leq x \leq 10$ such that $f(4)<u<f(10)$? Why or why not. Sketch the graph of $f(x)$ for added visual proof.

$$
f(4)=((4)-2)^{2}=4 \quad f(10)=5
$$

\therefore Since $\lim _{x \rightarrow 4^{+}} f(x)=5 \neq f(4), f(x)$ is not cont $\forall x \in[4,10]$, thereto ore the IVT dues not apply

5. If f and g are continuous functions with $f(3)=5$ and $\lim _{x \rightarrow 3}[2 f(x)-g(x)]=4$, find $g(3)$.

$$
\begin{aligned}
& \text { Since } f \text { of } g \text { are cont. fins }+f(3)=5 \text { we know } \lim _{x \rightarrow 3} f(x)=5 \text { and } \lim _{x \rightarrow 3} g(x)=g(3) \text {. } \\
& \qquad \begin{array}{c}
\lim _{x \rightarrow 3}[2 f(x)-g(x)]=4 \\
2 \lim _{x \rightarrow 3} f(x)-\lim _{x \rightarrow 3} g(x)=4 \\
2(5)-g(3)=4 \\
g(3)=6
\end{array}
\end{aligned}
$$

6. Determine the values of x for which the function $f(x)=\left\{\begin{array}{l}\frac{1}{x}, x<1 \\ x^{2}, 1 \leq x<2 \\ \sqrt{8 x}, 2<x \leq 8 \\ 8.0001, x>8\end{array} \quad\right.$ is continuous.
\quad Cluck $x=0$. $f(1)=(1)^{2}=1$,
$\lim _{x \rightarrow 1^{-}} f(x)=1=f(1)=\lim _{x \rightarrow 1^{+}} f(x)=1$
cont © $x=1$
$f(2)=$ DNE, not cunt © $x=2$
chuck $x=8$
$f(8)=\sqrt{8}(8)=8 \neq \lim _{x \rightarrow 8^{+}} f(x)=8.0001$
not cut e $x=8$
f is cut. $\forall x \neq 0,2,8$.
7. Use the IVT to show that there is a solution to the given functions on the given intervals. Be sure to test your hypothesis, show numeric evidence, and write a concluding statement. Use your calculator to find the actual solution value correct to three decimal places.

$$
\begin{array}{ll}
\text { (a) } \cos x=x,(0,1) & \text { (b) } \ln x=e^{-x},(1,2) \\
\text { Let } f(x)=\cos x-x & \text { Let } g(x)=\ln x-e^{-x}=\ln x-\frac{1}{e} . \\
f \text { is cont } \forall x \in[0,1] . & g(x) \text { is cont } \forall x \in[1,2] . \\
f(0)=\cos 0-0=1 & g(1)=\ln 1-\frac{1}{e^{\prime}}=-\frac{1}{e}<0 \\
f(1)=\cos 1-1<0 & g(2)=\ln 2-\frac{1}{e^{2}}>0 \\
\therefore \text { since } f(x) \text { is cont on }[0,1] \text { and } & \therefore \text { Since } g(x) \text { is cont on }[1,2] \text { and } \\
f(1) \subseteq 0 \subseteq f(0), \text { according to } & g(1) \leq 0 \leq g(2) \text {, according to the } \\
\text { the } N \tau, \exists \text { an } x E(0,1) \text { such that } & \text { IVT, there exists an } x E(1,2) \\
f(x)=0 & \text { such that } g(x)=0 .
\end{array}
$$

8. Mr. Wenzel is mountain climbing with Mr. Korpi. They leave the base of Mount BBB at 7:00 A.M. and take a single trail to the top of the mountain, arriving at the summit at 7:00 P.M. where they spend a sleepless night dodging bears and lightning bolts in their heads. The next morning, they wearily leave the summit at 7:00 A.M. and travel down the same path they came up the day before, arriving at the base of the mountain at 7:00 P.M. Will there be a point along the trail where Mr. Wenzel and Mr. Korpi will be standing at exactly the same time of day on consecutive days? Why or why not?

Path up lolown are continuous on [Fam, 7 pm]
According to the IVT, there exists at least one time, $t E$ (7 am, 7 pm)
where the graphs wetersect.
lutersut at $(t, W(t))$.
9. The functions f and g are continuous for all real numbers. The table below gives values of the functions at selected values of x. The function h is given by $h(x)=g(f(x))+2$.

x	$f(x)$	$g(x)$
1	3	4
3	9	-10
5	7	5
7	11	25

Explain why there must be a value w for $1<w<5$ such that $h(w)=0$
Given $f \& g$ are cortinuous functions, $\forall x$.
therefure $h(x)$ is a cut fan $\forall x \in[1,5]$.
$h(1)=-8 \quad h(5)=27$
\therefore Since $h(x)$ is cent. on $[1,5]$ and $-8 \leq 0 \leq 27$, according to the $1 V$, there usists $\omega \in(1,5)$ sucu that $n(w)=0$.
10. The functions f and g are continuous for all real numbers. The function h is given by $h(x)=f(g(x))-x$. The table below gives values of the functions at selected values of x. Explain why there must be a value of u for $1<u<4$ such that $h(u)=-1$.

x	1	2	3	4
$f(x)$	0	8	-3	6
$g(x)$	3	4	1	2

Givein $f d g$ are cout. $\forall x$, therefore $n(x)$ is cont $\forall x \in[1,4]$
$h(1)=-4 \quad h(4)=4$
Since $h(x)$ is cont on $[1,4]$ and $-4 \leq-1 \leq 4$, according to
the IVE, there vast a $M E(1,4)$ such that $h(4)=-1$.

Multiple Choice

1
11. Let $g(x)$ be a continuous function. Selected values of g are given in the table below.

x	3	5	6	9	10
$g(x)$	2	5	+1	$-1+1$	$4+1$

What is the fewest number of times the graph of $g(x)$ will intersect $y=1$ on the closed interval $[3,10]$?
(A) None
(B) One
(C) Two
(D) Three
(E) Four
\qquad 12. Let $h(x)$ be a continuous function. Selected values of h are given in the table below.

x	2	3	4	5	7
$h(x)$	2	5	(1)	k	(2)
	4	3			

For which value of k will the equation $h(x)=\frac{2}{3}$ have at least two solutions on the closed interval $[2,7]$?
(A) 1
(B) $\frac{3}{4}$
(C) $\frac{7}{9}$
(D) $\frac{2}{3}$
(E) $\frac{11}{18}$
B 13. If $f(x)=\left\{\begin{array}{l}x+1, \quad x \leq 1 \\ 3+a x^{2},\end{array}, x>1\right.$, then $f(x)$ is continuous for all x if $a=$
(A) 1
(B) -1
(C) $\frac{1}{2}$
(D) 0
(E) -2
$f(1)=2 \quad$ cunt. if $\lim _{x \rightarrow 1^{+}} f(x)=f(1)=2$

$$
3+a(1)^{2}=2
$$

$$
3+a=2
$$

$$
010
$$

$$
a=-1
$$

14. If $f(x)=\left\{\begin{array}{ll}\frac{\sqrt{2 x+5}-\sqrt{x+7}}{x-2}, & x \neq 2 \\ k, & x=2\end{array}\right.$, and if f is continuous at $x=2$, then $k=$
(A) 0
(B) $\frac{1}{6}$
(C) $\frac{1}{3}$
(D) 1
(E) $\frac{7}{5}$

If cout at $x=2$ then $\lim _{x \rightarrow 2} f(x)=f(2)=k$

$$
\begin{aligned}
& \lim _{x \rightarrow 2} \frac{\sqrt{2 x+5}-\sqrt{x+7}}{x-2}\left(\frac{\sqrt{2 x+5}+\sqrt{x+7}}{\sqrt{2 x+5}+\sqrt{x+7}}\right)=k \\
& \lim _{x \rightarrow 2} \frac{2 x+5-(x+7)}{(x-2)(\sqrt{2 x+5}+\sqrt{x+7})}=k
\end{aligned} \quad \begin{gathered}
\lim _{x \rightarrow 2} \frac{x-2}{(x-2)(\sqrt{2 x+5}+\sqrt{x+7)}}=k \\
\frac{1}{3+3}=k \\
\frac{1}{6}=k
\end{gathered}
$$

C 15. Let f be the function defined by the following.

$$
f(x)= \begin{cases}\sin x, & x<0 \quad \text { in } 0=0 \quad(0)^{2}=0 \\ x^{2}, & 0 \leq x<1 \quad(1)^{2}=1 \quad 2-1=1 \\ 2-x, & 1 \leq x<2 \quad 2-2=0 \\ x-3, & x \geq 2^{x} \quad 2-3=-1\end{cases}
$$

For what values of x is f NOT continuous?
(A) 0 only
(B) 1 only
(C) 2 only
(D) 0 and 2 only
(E) 0,1 , and 2
\qquad 16. Let f be a continuous function on the closed interval $[-3,6]$. If $f(-3)=-1$ and $f(6)=3$, then the Intermediate Value Theorem guarantees that
(A) $f(0)=0$
$y^{\prime} s-1 \leq \# \leq 3$
(B) The slope of the graph of f is $\frac{4}{9}$ somewhere between -3 and 6
(C) $-1 \leq f(x) \leq 3$ for all x between -3 and 6
(D) $f(c)=1$ for at least one c between -3 and 6
(E) $f(c)=0$ for at least one c between -1 and 3

A
17. Let f be the function given by $f(x)=\frac{(x-1)\left(x^{2}-4\right)}{x^{2}-a}$. For what positive values of a is f continuous for all real numbers x ? $\quad \frac{(x-1)(x+2)(x-2)}{(x+5 a)(x-\sqrt{a})}$
(A) None
(B) 1 only
(C) 2 only
(D) 4 only
(E) 1 and 4 only
18. If f is continuous on $[-4,4]$ such that $f(-4)=11$ and $f(4)=-11$, then which must be true?
(A) $f(0)=0$
(B) $\lim _{x \rightarrow 2} f(x)=8$
(C) There is at least one $c \in[-4,4]$ such that $f(c)=8$
(D) $\lim _{x \rightarrow 3} f(x)=\lim _{x \rightarrow-3} f(x) \quad$ (E) It is possible that f is not defined at $x=0$

