Name <

Date

WS 1.5: Continuity on Intervals & IVT

Period

Worksheet 1.5—Continuity on Intervals & IVT

Show all work. No Calculator (unless stated otherwise)

Short Answer

1. Let
$$f(x) = \begin{cases} x^2, & x \le 1 \\ x^2 - 2x - 1, & 1 < x < 3 \\ 4, & x \ge 3 \end{cases}$$

(a) Sketch a graph of f(x).

(b) Based on the function above, list the largest intervals on $x \in (-\infty, \infty)$ for which f(x) is continuous. f is continuous on $(-\infty, 1] \cup (1, 3) \cup [3, \infty)$

(c) Find a number b such that f(x) is continuous in $(-\infty, b]$ but not in $(-\infty, b+1)$. b = 1 cont. on $(-\infty, 1]$ but not $(-\infty, 2)$ Note: any $b \in (0, 1]$

(d) Find all numbers a and b such that f(x) is continuous in (a,b) but not in (a,b]. and b, b = 3

(e) Find the least number a such that f(x) is continuous in $[a, \infty)$.

2. A toy car travels on a straight path. During the time interval $0 \le t \le 60$ seconds, the toy car's velocity *v*, measured in feet per second, is a continuous function. Selected values are given below.

t (sec)	0	15	25	30	35	50	60
v(t) (ft/sec)	-10	-15	-10	-7	-5	0	13

For 0 < t < 60, must there be a time t when v(t) = -2? Justify.

Given V(t) is a cont. from therefore v(t) cont. V & E [35, 50]

- V-(35)=-5 V(50)=0
- $\therefore \text{ Since } -5 \leq -2 \leq 0 \quad 4 \quad v(t) \quad \text{cont. } \forall \text{ rec } [35, 50].$ accurding to the IVT there wasts at E(35, 50) such that v(t) = 2.
- 3. The graph of f is given below, and has the property of $\lim f(x) = \infty$

- (a) Can the IVT be used to prove that f(x) = 31415926 somewhere on the interval x∈[2,4]? Why or why not? Will, in fact, f(x) = 31415926 on this interval?
 Since x is not cont. on [2,4] the IVT cannot be used
- (b) State the largest intervals for which the given graph of f is continuous.

f is cont. on $[-4, -2)\cup(-2, 2)\cup[2, 4)\cup(4, b)\cup(b, 8)$

4. For the function $f(x) = \begin{cases} (x-2)^2, & x=4 \\ 5, & 4 < x \le 10 \end{cases}$. Find f(4) and f(10). Does the IVT guarantee a yvalue u on $4 \le x \le 10$ such that f(4) < u < f(10)? Why or why not. Sketch the graph of f(x) for added visual proof. $f(4) = ((4) - 2)^2 = 4$ f(w) = 5 \therefore Since $\lim_{x \to -24^+} f(x) = 5 \neq f(4)$, f(x) is not write $\forall x \in [4, 10]$, therefore the IVT does not apply.

5. If f and g are continuous functions with f(3) = 5 and $\lim_{x \to 3} \left[2f(x) - g(x) \right] = 4$, find g(3).

Since
$$f \neq g$$
 are cont. from $4 + f(3) = 5$ we know $\lim_{x \to 3} f(x) = 5$ and $\lim_{x \to 3} g(x) = g(3)$.

$$\lim_{x \to 3} [2f(x) - g(x)] = 4$$

$$\frac{\partial \lim_{x \to 3} f(x) - \lim_{x \to 3} g(x) = 4}{\chi_{-3} = 3}$$

$$\frac{\partial(5) - g(3) = 4}{g(5) = 6}$$

6. Determine the values of x for which the function $f(x) = \begin{cases} \frac{1}{x}, x < 1 \\ x^2, 1 \le x < 2 \\ x^2, 1 \le x < 2 \end{cases}$ is continuous. $\underbrace{VW \text{ at } x = 0}_{\substack{\{1, 2\} \\ x < 1 \le x < 2}} \text{ f(1) = (1)^2 = 1, \\ \underset{\{1, 2\} \\ x < 1 \le x < 2} \text{ f(1) = (1)^2 = 1, \\ \underset{\{1, 2\} \\ x > 1^2}{\text{ f(x) = 1}} \text{ f(1) = (1)^2 = 1, \\ x > 1^2 \text{ f(x) = 1} \text{ f(x) = 1} \text{ f(x) = 1} \\ \text{ cont } 0x = 1, \\ f(2) = DNE, \text{ not cont } 0x = 0 \\ f(2) = \sqrt{B(2)} = 0 \text{ f(x) = 8, cool} \\ x > 8^+ \\ \text{ not cont } 0x = 8. \end{cases}$ $f(3) = \sqrt{B(2)} = 0 \text{ f(x) = 8, cool} \\ x > 8^+ \\ \text{ not cont } 0x = 8. \end{cases}$ 7. Use the IVT to show that there is a solution to the given functions on the given intervals. Be sure to test your hypothesis, show numeric evidence, and write a concluding statement. Use your calculator to find the actual solution value correct to three decimal places.

(a) $\cos x = x$, (0,1) Let $f(x) = \cos x - x$. f is cont. $\forall x \in [0,1]$. $f(0) = \cos 0 - 0 = i$ $f(1) = \cos 1 - 1 < 0$. \therefore since f(x) is cont. on [0,1] and $f(1) \leq 0 \leq f(0)$, according to the IVT, $\exists an x \in (0,1)$ such that f(x) = 0.

(b)
$$\ln x = e^{-x}$$
, (1,2)
Let $g(x) = \ln x - e^{-x} = \ln x - \frac{1}{e}$.
 $g(x)$ is cont. $\forall x \in [1,2]$.
 $g(1) = \ln 1 - \frac{1}{e^{1}} = -\frac{1}{e} < 0$
 $g(z) = \ln 2 - \frac{1}{e^{2}} > 0$
 \therefore Since $g(x)$ is cont. on $[1,2]$ and
 $g(1) \leq 0 \leq g(2)$, according to the
 IVT , thus wist an $x \in (1,2)$
such that $g(x) = 0$.

8. Mr. Wenzel is mountain climbing with Mr. Korpi. They leave the base of Mount BBB at 7:00 A.M. and take a single trail to the top of the mountain, arriving at the summit at 7:00 P.M. where they spend a sleepless night dodging bears and lightning bolts in their heads. The next morning, they wearily leave the summit at 7:00 A.M. and travel down the same path they came up the day before, arriving at the base of the mountain at 7:00 P.M. Will there be a point along the trail where Mr. Wenzel and Mr. Korpi will be standing at exactly the same time of day on consecutive days? Why or why not?

Path up I down are continuous on [7am, 7pm] According to the IVT, there wists at least one time, t E (7am, 7pm) where the graphs intersect. Intersect at (t, Nt)).

9. The functions f and g are continuous for all real numbers. The table below gives values of the functions at selected values of x. The function h is given by h(x) = g(f(x)) + 2.

x	f(x)	g(x)	
1	3	4	
3	9	-10	
5	7	5	
7	11	25	

Explain why there must be a value w for 1 < w < 5 such that h(w) = 0Given $f \neq q$ are curtimes functions, $\forall \infty$.

```
therefore Tr(4) is a cut. for the [1,5].

h(1) = -8 h(5) = 27

.: Since h(4) is cut. on [1,5] and -8 ≤ 0 ≤ 27,

according to the 10T, there wists w ∈ (1,5)

such that h(w)=0.
```

10. The functions f and g are continuous for all real numbers. The function h is given by h(x) = f(g(x)) - x. The table below gives values of the functions at selected values of x. Explain why there must be a value of u for 1 < u < 4 such that h(u) = -1.

x	1	2	3	4
f(x)	0	8	-3	6
g(x)	3	4	1	2

Given f & gave cast. Yx, therefore N(x) is cart YxE[1,4]. N(1)=-4 N(4)=4

Since h(x) is cont. on [1,4] and $-4 \leq -1 \leq 4$, according to the NT, three wist a $u \in (1,4)$ such that h(u) = -1.

Multiple Choice

b = 11. Let g(x) be a continuous function. Selected values of g are given in the table below.

What is the fewest number of times the graph of g(x) will intersect y = 1 on the closed interval [3,10]?

(A) None (B) One (C) Two (D) Three (E) Four

b 12. Let h(x) be a continuous function. Selected values of h are given in the table below.

x	2	3	4	5	7	
h(x)	2	5	k 2	4	3	
our solinif K= = = so K<=.						

For which value of k will the equation $h(x) = \frac{2}{3}$ have **at least two solutions** on the closed interval [2,7]?

(A) 1 (B)
$$\frac{3}{4}$$
 (C) $\frac{7}{9}$ (D) $\frac{2}{3}$ (E) $\frac{11}{18}$

 $\mathbf{B} \quad 13. \text{ If } f(x) = \begin{cases} x+1, & x \le 1\\ 3+ax^2, & x > 1 \end{cases}, \text{ then } f(x) \text{ is continuous for all } x \text{ if } a = \\ (A) 1 \quad (B) -1 \quad (C) \frac{1}{2} \quad (D) 0 \quad (E) -2 \\ \mathbf{f}(x) = \mathbf{O} \quad \text{curt} \quad \text{if } \lim_{X \to 0} \frac{1}{x} = \mathbf{f}(x) = \mathbf{O} \\ \mathbf{f}(x) = \mathbf{O} \quad \text{curt} \quad \text{if } \lim_{X \to 0} \frac{1}{x} = \mathbf{O} \\ \mathbf{f}(x) = \mathbf{O} \quad \mathbf{f}(x) = \begin{cases} \sqrt{2x+5} - \sqrt{x+7} \\ x-2 \\ k, \\ x-2 \end{cases}, & x \neq 2 \\ \text{ and if } f \text{ is continuous at } x = 2, \text{ then } k = \\ k, \\ x = 2 \end{cases}$ $(A) 0 \quad (B) \frac{1}{6} \quad (C) \frac{1}{3} \quad (D) 1 \quad (E) \frac{7}{5} \\ \text{ If } \text{ curt} \text{ at } k = \mathbf{O} \\ \mathbf{f}(x) = \mathbf{O} \quad \mathbf{f}(x) = \mathbf{f}$

 $_$ 15. Let *f* be the function defined by the following.

$$f(x) = \begin{cases} \sin x, \ x < 0 \\ x^2, \ 0 \le x < 1 \\ 2 - x, \ 1 \le x < 2 \\ x - 3, \ x \ge 2^{\times} \\ 3 - 3 = -1 \end{cases}$$

For what values of *x* is *f* NOT continuous?

(A) 0 only (B) 1 only (C) 2 only (D) 0 and 2 only (E) 0, 1, and 2

b 16. Let *f* be a continuous function on the closed interval [-3,6]. If f(-3) = -1 and f(6) = 3, then the Intermediate Value Theorem guarantees that

(B) The slope of the graph of f is $\frac{4}{9}$ somewhere between -3 and 6

- (C) $-1 \le f(x) \le 3$ for all x between -3 and 6
- (D) f(c) = 1 for at least one c between -3 and 6
- (E) f(c) = 0 for at least one *c* between -1 and 3
- 17. Let f be the function given by $f(x) = \frac{(x-1)(x^2-4)}{x^2-a}$. For what **positive** values of a is f continuous for all real numbers x? (A) None (B) 1 only (C) 2 only (D) 4 only (E) 1 and 4 only

18. If f is continuous on $\begin{bmatrix} -4, 4 \end{bmatrix}$ such that f(-4) = 11 and f(4) = -11, then which must be true? (A) f(0) = 0 (B) $\lim_{x \to 2} f(x) = 8$ (C) There is at least one $c \in \begin{bmatrix} -4, 4 \end{bmatrix}$ such that f(c) = 8(D) $\lim_{x \to 3} f(x) = \lim_{x \to -3} f(x)$ (E) It is possible that f is not defined at x = 0