Name \qquad Date \qquad Period \qquad

Worksheet 2.1 -Tangent Line Problem

Show all work. No calculator permitted, except when stated.

Short Answer

1. Find the derivative function, $f^{\prime}(x)$, for each of the following using the limit definition.

$$
f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}
$$

(a) $f(x)=2 x^{2}+3 x-4$
$f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}$
$\lim _{h \rightarrow 0} \frac{\left[2(x+h)^{2}+3(x+h)-4\right]-\left[2 x^{2}+3 x-4\right]}{h}$
$\lim _{h \rightarrow 0} \frac{2 x^{2}+4 x h+2 n^{2}+3 x+3 h-4-2 x^{2}-3 x+4}{h}$
$\lim _{x \rightarrow 0} \frac{k(4 x+2 h+3)}{k}$
$4 x+3$
$f^{\prime}(x)=4 x+3$
(b) $f(x)=\frac{3}{x-1}$
$f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}$
$\lim _{h \rightarrow 0} \frac{\left(\frac{3}{x+h-1}\right)-\left(\frac{3}{x-1}\right)}{h}\left(\frac{(x+h-1)(x-1)}{(x+h-1)(x-1)}\right)$
$\lim _{h \rightarrow 0} \frac{3(x-1)-3(x+h-1)}{h(x+h-1)(x-1)}$
$\lim _{u \rightarrow 0} \frac{3(x-3-3 x-3 x+3}{x(x+u-1)(x-1)}$
$\lim _{x \rightarrow 0} \frac{-3}{(x+h-1)(x-1)}$
$f^{\prime}(x)=\frac{-3}{(x-1)^{2}}$
(c) $f(x)=\sqrt{x-2}$
$f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}$
$\lim _{h \rightarrow 0} \frac{\sqrt{x+h-2}-\sqrt{x-2}}{h}\left(\frac{\sqrt{x+h-2}+\sqrt{x-2}}{\sqrt{x+h-2}+\sqrt{x-2}}\right)$

$$
\lim _{h \rightarrow 0} \frac{x+x-x-x+2}{y(\sqrt{x+h-2}+\sqrt{x-2}}
$$

$$
\lim _{h \rightarrow 0} \frac{1}{\sqrt{x+u-2}+\sqrt{x-2}}
$$

$$
f^{\prime}(x)=\frac{1}{2 \sqrt{x-2}}
$$

2. Find the slope of the tangent lines to the graphs of the following functions at the indicated points. Use the alternate form. \uparrow
same ar find derivative!

$$
f^{\prime}(c)=\lim _{x \rightarrow c} \frac{f(x)-f(c)}{x-c}
$$

(a) $f(x)=3-2 x$ at $(-1,5)$
(b) $g(x)=5-x^{2}$ at $x=2$
$c=-1 \quad f(c)=5$
$c=2 \quad g(c)=1$
$f^{\prime}(-1)=\lim _{x \rightarrow-1} \frac{f(x)-f(-1)}{x-(-1)}$
$\lim _{x \rightarrow-1} \frac{3-2 x-5}{x+1}$
$g^{\prime}(2)=\lim _{x \rightarrow 2} \frac{g(x)-g(2)}{x-2}$
$\lim _{x \rightarrow 2} \frac{5-x^{2}-1}{x-2}$
$\lim _{x \rightarrow-1} \frac{-2(x+1)}{x+1}$
$f^{\prime}(-1)=-2$

$$
\begin{aligned}
& \lim _{x \rightarrow 2} \frac{-\left(x^{2}-4\right)}{x-2} \\
& \lim _{x \rightarrow 2} \frac{-(x+2)(x-2)}{x / 2} \\
& g^{\prime}(2)=-4
\end{aligned}
$$

3. Find the equation of the tangent line, in Taylor Form: $y=y_{1}+m\left(x-x_{1}\right)$, for $g(x)=x^{2}+1$ at $(2,5)$. Use the modified form to find $g^{\prime}(2)$.

$$
\begin{aligned}
& g^{\prime}(2)=4
\end{aligned}
$$

$$
\begin{aligned}
\text { slope tangent line }= & \text { derivative at } \\
& x \text {-valve. }
\end{aligned}
$$

4. Find the equation of the tangent line, in Taylor Form: $y=y_{1}+\stackrel{\downarrow}{m}\left(x-x_{1}\right)$, for $y=\sqrt{x}-1$ at $c=9$. Use the alternate form to find $y^{\prime}(9)$.

$$
\begin{array}{cr}
c=9 & y^{\prime}(c)=\lim _{x \rightarrow c} \frac{f(x)-f(c)}{x-c} \\
y^{\prime}(9)=\lim _{h \rightarrow 0} \frac{y(9+h)-y(9)}{h} & \text { Taylor Form: } \\
\lim _{h \rightarrow 0} \frac{\sqrt{9+h}-1-2}{h} & m=y^{\prime}(9) \\
\lim _{h \rightarrow 0} \frac{\sqrt{9+h}-3}{h}\left(\frac{\sqrt{9+h}+3}{\sqrt{9+h}+3}\right) & \text { pt }\left(x_{1}, y_{1}\right)=(\\
\lim _{h \rightarrow 0} \frac{x+h-x}{h(\sqrt{9+h}+3)} & \text { Equation of } \\
\lim _{h \rightarrow 0} \frac{1}{\sqrt{9+h}+3} & \text { in Taylor For } \\
y^{\prime}(9)=\frac{1}{6} & y=2+ \\
\text { slop of tanquet line } & \\
\text { at } x=9 . &
\end{array}
$$

5. Find an equation of the line that is tangent to $f(x)=x^{3}$ and parallel to the line $3 x-y+1=0$.

Remember, parallel lines have the same slope, but different base camps.

$$
\begin{aligned}
& 3 x-y+1=0 \quad f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h} \\
& \begin{array}{c}
y=3 x+1 \\
\uparrow=10 p=3
\end{array} \\
& \begin{aligned}
& h \rightarrow 0 \\
& \lim _{h \rightarrow 0} \frac{(x+h)^{3}-x^{3}}{h} \\
& \lim _{h \rightarrow 0} \frac{x^{3}+3 x^{2} h+3 x h^{2}+h^{3}-x^{3}}{h} \\
& \lim _{h \rightarrow 0} \frac{k\left(3 x^{2}+3 x h+h^{2}\right)}{h} \\
& \begin{array}{l}
f^{\prime}(x)=3 x^{2} \\
\text { slopetanght line needs to equal 3 }
\end{array}
\end{aligned} \\
& 3 x^{2}=3 \\
& x= \pm 1 \text {, two eqins! } \\
& \text { pt: } \frac{\varepsilon_{q \prime n} 1}{(1, f(1))} \frac{\varepsilon_{q \text { 'n } 2}}{\text { pt }(-1, f(-1))} \\
& m=3 \\
& m=3 \\
& f(1)=1 \quad f(-1)=-1 \\
& y_{1}=1+3(x-1) \quad y_{2}=-1+3(x+1)
\end{aligned}
$$

Visual

$$
\begin{aligned}
& (x-1) 2 x=\frac{x^{2}--3}{x-1}(x-1) \\
& \lim _{h \rightarrow 0} \frac{h(2 x+h)}{k} \\
& 2 x^{2}-2 x=x^{2}+3 \\
& \text { equation. } \\
& f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h} \\
& \operatorname{Lim}_{h \rightarrow 0} \frac{(x+h)^{2}-x^{2}}{h} \\
& \lim _{h \rightarrow 0} \frac{x^{2}+2 x h+h^{2}-x^{2}}{h} \\
& f^{\prime}(x)=2 \chi \\
& \text { slope of line thru } \\
& \text { pt }(-1,3) \\
& m_{l_{1}}=\frac{y_{2}-y_{1}}{x_{2}-x_{1}} \\
& 2 x^{2}-2 x=x^{2}+3 \\
& \text { Eu' } 1\left(l_{1}\right) \\
& x^{2}-2 x-3=0 \\
& (x+1)(x-3)=0 \\
& x+1=0 x-3=0 \\
& \frac{\varepsilon q j \sim}{}\left(l_{1}\right) \\
& x=-1 \quad x=3 \\
& \text { Erin } 2\left(l_{2}\right) \\
& m=f^{\prime}(-1)=2(-1)=-2 \quad \text { point: }(3, f(3))=(3,9) \\
& \text { Taylor form: } y=1-2(x+1) \\
& m=f^{\prime}(3)=2(3)=6 \\
& \text { Taylor form': } y=9+6(x-3)
\end{aligned}
$$

6. Find the equations of the two lines, ℓ_{1} and ℓ_{2}, that are tangent to the graph of $f(x)=x^{2}$ if each pass through the point $(1,-3)$, as shown at right. Hint: equate two different expressions for finding the slope of a line. Solve the resulting

7. The graph of a function $f(x)$ is show above. For which value(s) of x is the graph of $f(x)$ not differentiable. In each case, explain why not.
Not diff' able at:

$$
\begin{aligned}
& x=-2 \text { blc fis not cont. at } x=-2 \text { since } \lim _{x \rightarrow-2} f(x)=\text { DNE } \\
& x=-1 \text { blc the graph of } f(x) \text { has a cusp of } x=-1 \text { (ie: slopes tangut lines differect.) } \\
& x=0 \text { blc the reis a vertical taugut at } x=0 \text { (ie: slope tangut line is infinite) } \\
& x=2 \text { blc } f \text { is not cunt. of } x=2 \text { since } f(2)=D N E .
\end{aligned}
$$

8. For each of the following, the limit represents $f^{\prime}(c)$ for a function $f(x)$ and a number $x=c$. Find both f and c.
(a) $\lim _{h \rightarrow 0} \frac{[5-3(1-h)]-2}{h}$
(b) $\lim _{h \rightarrow 0} \frac{(-2 * h)^{3}+8}{h}$
$f(x)=5-3 x$
$c=1$

$$
\begin{gathered}
f(x)=x^{3} \\
c=-2
\end{gathered}
$$

(c) $\lim _{x \rightarrow 6} \frac{-x^{2}+36}{x-6}$
$f(x)=-x^{2}$
$c=6$
(d) $\lim _{x \rightarrow 9} \frac{2 \sqrt{x}-6}{x-9}$
$f(x)=2 \sqrt{x}$
$c=9$

$$
\text { Calculus Maximus } \quad f^{\prime}(c)=\lim _{x \rightarrow c} \frac{f(x)-f(c)}{x-c}
$$

Cannot usecenctimuity ${ }_{\text {as jus }}$ justification for hot difflable

9. Using the alternate form, determine whether each of the following function is differentiable at the indicated point. Show the work that leads to your answer.
(a) $f(x)=\left\{\begin{array}{l}5-4 x, \\ -2 x^{2},\end{array} x>0\right.$ a at $x=0$
$\lim _{x \rightarrow 0^{-}} \frac{f(x)-f(0)}{x-0} \quad \lim _{x \rightarrow 0^{+}} \frac{f(x)-f(0)}{x-0}$
(b) $f(x)=\left\{\begin{array}{ll}(x-1)^{3}, & x \leq 1 \\ (x-1)^{2}, & x>1\end{array}\right.$ at $x=1$

$$
\lim _{x \rightarrow 1^{-}} \frac{f(x)-f(1)}{x-1} \quad \lim _{x \rightarrow 1^{+}} \frac{f(x)-f(1)}{x-1}
$$

$$
\lim _{x \rightarrow 1^{-}} \frac{(x-1)^{3}-(1-1)^{3}}{x-1} \quad \lim _{x \rightarrow 1^{+}} \frac{(x-1)^{2}-(1-1)^{3}}{x-1}
$$

$$
\lim _{x \rightarrow 1^{-}}(x-1)^{2} \quad \lim _{x \rightarrow 1^{+}} x-1
$$

$$
\text { DIE }(-\infty)
$$

Since $-4 \neq$ DNE, is not differentiable at $x=0$.
\therefore Since $0=0$ f is differentiable at $x=1$

10. True or False. If false, explain why or give a counterexample.

(a) The slope of the tangent line to the differentiable function f at the point $(2, f(2))$ is $\frac{f(2+h)-f(2)}{h}$. False, slope of tanqut line at $(2, f(2))$ is $: \lim _{h \rightarrow 0} \frac{f(2+h)-f(2)}{h}$
(b) If a function is continuous at a point, then that function is differentiable at that point.

```
False, cau be diff'able.
gf thenes a crisp or vefical taugut at
```

Note: If a fan is diff'able then it's continuous is TRUE!
(c) If a function's slopes from both the right and the left at a point are the same, then that function is differentiable at that point.

```
Falce, fin must be contiwwous
    Ifthere's a jump or hole its not diffiable
    (taugut stopes could be the same)
```

(d) If a function is differentiable at a point, then that function is continuous at that point.

$$
\begin{aligned}
& \text { 100\%. The! } \\
& D \rightarrow C \text { but } C \nrightarrow D
\end{aligned}
$$

11. Using your calculator to zooooooom in, determine if $h(x)=\sqrt{x^{2}+0.0001}+0.99$ is locally linear at $x=0$. Give a reason for your answer. (Zoom WAAARYy in'.)
Hes $h(x)$ is locally linear (horiz.line) at $x=0$
and since $h(x)$ is continuous at $x=0, h(x)$ is also
diff' able at $x=0$

Multiple Choice

E
12. A function will fail to be differentiable at all of the following except
(名) A vertical asymptote
(B) A removable discontinuity
(C) A cusp

13. Let f be the function defined above. Which of the following statements about f are true?
I. $\lim _{x \rightarrow 2} f(x)$ exists
II. f is continuous at $x=2 \times$
III. f is differentiable at $x=2 \chi$
(A) I only
(B) II only
(C) III only
(D) I and II only
(E) I, II, and III
14. Let f be a differentiable function such that $f(2)=1$ and $f^{\prime}(2)=4$. Let $T(x)$ be the equation of the tangent line to $f(x)$ at $x=2$. What is the value of $T(1.9)$?
(A) 0.4
(B) 0.6
(C) 0.7
(D) 1.3
(E) 1.4
point: $\left(x_{1}, y_{1}\right)=(2,1)$
$m=f^{\prime}(2)=4$

$$
\varepsilon_{q}: \quad y=1+4(x-2)
$$

$$
\begin{aligned}
y(1.9) & =1+4(1.9-2) \\
& =0.6
\end{aligned}
$$

15. Let f be a function such that $\lim _{h \rightarrow 0} \frac{f(7+h)-f(7)}{h}=5$. Which of the followign must be true?
I. f is continuous at $x=7 \checkmark D \Rightarrow C$
II. f is differentiable at $x=7$
III. The derivative of f is differentiable at $x=7$ (might be)
(A) I only
(B) II only
(C) I and II only
(D) I and III only
(E) II and III only
\& Would have to find
$\lim _{h \rightarrow 0} \frac{f^{\prime}(7+h)-f^{\prime}(7)}{h}$
to determine whether its tie.
16. At $x=4$, the function given by $h(x)=\left\{\begin{array}{ll}x^{2}, & x \leq 4 \\ 4 x, & x>4\end{array}\right.$ is

(A) Undefined

$$
\lim _{x \rightarrow 4^{-}} f(x)=16=f(4)=\lim _{x \rightarrow 4^{+}} f(x)
$$

(B) Continuous but not differentiable
(C) Differentiable but not continuous contimumar at $x=4$
(D) Neither continuous nor differentiab

(E) Both continuous and differentiable

$$
\begin{gathered}
\lim _{x \rightarrow 4^{-}} \frac{x^{2}-16}{x-4} \quad \lim _{x \rightarrow 4^{+}} \frac{4 x-16}{x-4} \\
\lim _{x \rightarrow 4^{-}} \frac{(x+4)(x-4)}{x-4} \\
8 \quad \lim _{x \rightarrow 4^{+}} \frac{4(x-4)}{x-4} \\
8 \quad 4 \\
\text { Not diffable! }
\end{gathered}
$$

