Name \qquad Date \qquad Period \qquad

Worksheet 2.3-Differentiation Rules

Show all work. No Calculator unless stated otherwise.

Short Answer

For 1-3, using correct notation (always), find the derivatives of the following functions. Simplify early and often!! Be sure to consider rewriting each term in the correct form first.

1. $f(x)=-2 x^{3}-x^{2}+4 x-7$

$$
f^{\prime}(x)=-6 x^{2}-2 x+4
$$

$$
\begin{array}{cl}
\text { 2. } g(x)=\frac{1}{x}-3 \sin x+\frac{4 x+2 \sqrt{x}}{3 \sqrt[3]{x}} & \text { 3. } y=4 x^{2}(3-2 x)^{2} \\
g(x)=x^{-1}-3 \sin x+\frac{4 x}{3 x^{1 / 3}}+\frac{2 x^{1 / 2}}{3 x^{1 / 3}} & y=4 x^{2}\left(9-12 x+4 x^{2}\right) \\
g(x)=x^{-1}-3 \sin x+\frac{4}{3} x^{2 / 3}+\frac{2}{3} x^{1 / 6} & y=36 x^{2}-48 x^{3}+16 x^{4} \\
y^{\prime}=\frac{d y}{d x}=72 x-144 x^{2}+1 \\
g^{\prime}(x)=-1 x^{-2}-3 \cos x+\frac{8}{9} x^{-1 / 3}+\frac{1}{9} x^{-5 / 6} & g^{\prime}(x)=-\frac{1}{x^{2}}-3 \cos x+\frac{8}{9 \sqrt[3]{x}}+\frac{1}{9 \sqrt{x^{5}}}
\end{array}
$$

For 4-6, using correct notation (never not always), evaluate each of the following with respect to the indicated variable. Simplify early and often!! Be sure to consider rewriting each term in the correct form first.
4. $\frac{d}{d t}[\sqrt{3 t}-6 \sqrt[4]{t}-4 \cos t-\pi]=$
5. $\frac{d}{d x}\left[\left(\frac{x}{x^{2}+1}\right)^{-1}\right]=$
6. $\frac{d}{d m}\left[\frac{m^{-1}+m^{-2}}{m^{-3}}\right]=$
$\frac{d}{d t}\left[\sqrt{3} t^{1 / 2}-6 t^{1 / 4}-4 \cos t-\pi\right]$
$\frac{d}{d x}\left[\frac{x^{2}+1}{x}\right]$
$\frac{d}{d x}\left[x+x^{-1}\right]$
$\frac{d}{d m}\left[\frac{\frac{1}{m}+\frac{1}{m^{2}}}{\frac{1}{m^{3}}}\left(\frac{m^{3}}{m^{3}}\right)\right]$
$\frac{\sqrt{3}}{2} t^{-1 / 2}-\frac{3}{2} t^{-3 / 4}+4 \sin t$

$$
\frac{\sqrt{3}}{2 \sqrt{t}}-\frac{3}{2 \sqrt[4]{t^{3}}}+4 \sin t
$$

$$
\begin{aligned}
& 1-x^{-2} \\
& 1-\frac{1}{x^{2}} \text { or } \\
& \frac{x^{2}-1}{x^{2}}
\end{aligned}
$$

$$
\begin{gathered}
\frac{d}{d m}\left[\frac{m^{2}+m}{1}\right] \\
\frac{d}{d m}\left[m^{2}+m\right] \\
2 m+1
\end{gathered}
$$

7. For $f(x)=\left(x^{2}+2 x\right)(x+1)$, find $f^{\prime}(x)$. Remember to simplify early and often!

$$
\begin{gathered}
f(x)=x^{3}+2 x^{2}+x^{2}+2 x \\
f(x)=x^{3}+3 x^{2}+2 x \\
f^{\prime}(x)=3 x^{2}+6 x+2
\end{gathered}
$$

$$
\text { Meed slope }=f^{\prime}(x)
$$

(a) find the equation of the tangent line, in Taylor form, to the graph of f at $x=1$.
(b) find the equation of the normal line, in Taylor form, to the graph of f at $x=1$.

perpend to taught line

from: $f^{\prime}(1)=11, f(1)=6$

$$
m=\frac{-1}{f^{\prime}(1)}=-\frac{1}{11}
$$

eq normal lime:

$$
y=y_{1}+m_{N}\left(x-x_{1}\right)
$$

$$
y=6-\frac{1}{11}(x-1)
$$

(c) Using your equation from part (b), find the x-intercept of the normal line. Show the work that leads to your answer.

$$
\text { from (b), Normal line: } \begin{aligned}
y & =6-\frac{1}{11}(x-1) \\
11 \cdot y & =\left(6-\frac{1}{11}(x-1)\right) 11 \\
0 & =66-x+1 \\
x & =67 \\
x \text {-int }: & (67,0)
\end{aligned}
$$

For 8-10, determine the points) (if any) at which the graph of the following functions have horizontal tangent lines. Justify. horiz. taught lines occur when the derivative $=0$.

> 8. $y=x+\sin x, 0 \leq x<2 \pi$
> $y^{\prime}=\frac{d y}{d x}=1+\cos x$
> $0=1+\cos x$
> $-1=\cos x$
> $x=\pi$
> $y(\pi)=\pi$
> has a horiz tanguy
> line at the point
> (π, π).

Page 2 of 6
9. $y=\sqrt{3} x+2 \cos x, x \in[0,2 \pi)$
$y^{\prime}=\frac{d y}{d x}=\sqrt{3}-2 \sin x$
$\sqrt{3}-2 \sin x=0$ $\sin x=\frac{\sqrt{3}}{2}$
$x=\frac{\pi}{3}, \frac{2 \pi}{3}$
$y\left(\frac{\pi}{3}\right)=\sqrt{3}\left(\frac{\pi}{3}\right)+2 \cos \frac{\pi}{3}$
$=\frac{\sqrt{3} \pi}{3}+1$
$y\left(\frac{2 \pi}{3}\right)=\sqrt{3}\left(\frac{2 \pi}{3}\right)+2 \cos \frac{2 \pi}{3}$
$=\frac{2 \sqrt{3} \pi}{3}-1$
10. $f(x)=\frac{2}{x^{2}}$

$$
\begin{aligned}
& f(x)=2 x^{-2} \\
& f^{\prime}(x)=-4 x^{-3} \\
& f^{\prime}(x)=\frac{-4}{x^{3}} \\
& \frac{-4}{x^{3}} \neq 0
\end{aligned}
$$

Since $f^{\prime}(x) \neq 0, f(x)$ does not
have any points w/ horiz
tangent lines.

$$
\begin{aligned}
& \text { y has hons. tangent lives at } \\
& \text { the points }\left(\frac{\pi}{3}, \frac{\sqrt{2 \pi} \pi}{3}+1\right)+\left(\frac{2 \pi}{3}, \frac{2 \sqrt{3} \pi}{3}-1\right)
\end{aligned}
$$

$$
\begin{aligned}
& \text { from above, } \text { Need point }(x, f(x)) \\
& f^{\prime}(x)=3 x^{2}+6 x+2 \\
& \begin{array}{lr}
f^{\prime}(1)=11 & \text { Equation of Tough live } \\
f(1)=6 & y=y_{1}+m_{T}\left(x-x_{1}\right)
\end{array} \\
& f(1)=6 \quad y=6+11(x-1)
\end{aligned}
$$

For $11 \& 12$, find the value of k such that the given line is tangent to the graph of the given function.
11. $f(x)=x^{2}-k x$, line $y=4 x-9$
12. $f(x)=k \sqrt{x}$, line $y=x+4$

$$
\begin{array}{ll}
\text { (1) } y \text {-value } & \text { (2) slopes } \\
f(x)=y & f^{\prime}(x)=y^{\prime} \\
x^{2}-k x=4 x-9 & 2 x-k=4
\end{array}
$$

$\left(\frac{1}{2}(4+k)\right)^{2}-k\left(\frac{1}{2}(4+k)\right)=4\left(\frac{1}{2}(4+k)\right)-9^{2 x}=4+k$
$4\left[\frac{1}{4}(4+k)^{2}-k\left(2+\frac{1}{2} k\right)\right]=[2(4+k)-9] 4$
$16+8 k+k^{2}-8 k-2 k^{2}=8(4+k)-36$
$-k^{2}+16=32+8 k-36$
$-k^{2}+16=8 k-4$
$\begin{aligned} &+k^{2}-16+k^{2}-16 \\ & 0=k^{2}+8 k-20\end{aligned}$
$0=(k+10)(k-2)$
$\begin{array}{cc}k+10=0 & k-2=0 \\ k=-10 & k=2\end{array}$

Questions 13-16 are True of False. If False, either explain why, rewrite it to make it true, or provide a counterexample.
13. If $f^{\prime}(x)=g^{\prime}(x)$, then $f(x)=g(x)$.

False!
Let $f(x)=2 x^{2}+3$ and $g(x)=2 x^{2}+5$
$f^{\prime}(x)=4 x$ and $g^{\prime}(x)=4 x$ but $f(x) \neq g(x)$.
14. If $f(x)=g(x)+C$, then $f^{\prime}(x)=g^{\prime}(x)$.

$$
\begin{aligned}
& \text { True } \begin{aligned}
\text { If } f(x)=g(x)+C \text { then } \frac{d}{d x}[f(x)] & =\frac{d}{d x}[g(x)+C] \\
f^{\prime}(x) & =\frac{d}{d x} g(x)+\frac{d}{d x} C \\
& =g^{\prime}(x)+0 \\
& =g^{\prime}(x)
\end{aligned}
\end{aligned}
$$

15. If $y=\pi^{3}$, then $\frac{d y}{d x}=3 \pi^{2}$.

False!
$y=\pi^{3}$ is a constant
$\frac{d y}{d x}\left(\pi^{3}\right)=0$
16. If $f(x)=\frac{1}{x^{n}}$, then $f^{\prime}(x)=\frac{1}{n x^{n-1}}$

False!
If $f(x)=\frac{1}{x^{n}}=x^{-n}$
then $f^{\prime}(x)=-n x^{-n-1}$

$$
\begin{aligned}
& =-n x^{-(n+1)} \\
& =\frac{-n}{x^{n+1}} \neq \frac{1}{n x^{n-1}}
\end{aligned}
$$

$$
\frac{\text { Iustantaneous! }}{n^{\prime \prime}(t)=v^{\prime}(t)=a(t)}
$$

17. (Calculator permitted) A priceless Faberge egg is dropped from the top of a building that is 1362 feet tall. The egg's height in feet at time t seconds is given by $h(t)=-16 t^{2}+1362$.

Aug RoC!

(a) Find the average velocity, in $\mathrm{ft} / \mathrm{sec}$, of the egg on the interval $[1,2]$ seconds. Show the work that
leads to your answer (always).
Ang $R_{0} C=\frac{n(2)-h(1)}{2-1}$
$=\frac{\left[-16(2)^{2}+1362\right]-\left[-16(1)^{2}+1362\right]}{1}$
$=1298-1346$
$=-48$
(b) Based on your answer in part (a), fill in the blanks so that the following sentence verbally describes the result found above.
"On the interval from $t=$ \qquad seconds to $t=$ \qquad seconds, the egg's height is
decreasing (increasing/decreasing), on average, by \qquad 48 feet per second."

$$
r(t)=h^{\prime}(t)
$$

(c) Find the instantaneous velocity of the egg at $t=2$ seconds. Show the work that leads to your answer (always).

$$
\begin{aligned}
& h(t)=-16 t^{2}+1362 \\
& h^{\prime}(t)=-32 t \\
& h^{\prime}(t)=v(t) \\
& v(2)=-32(2) \\
& v(2)=-64 .
\end{aligned}
$$

(d) Based on your answer in part (c), fill in the blanks so that the following sentence verbally describes the result found above.
"At $t=2$ seconds , the egg's height is \qquad decreasing (increasing/decreasing), by

64 \qquad ."
(e) After how many seconds will the egg hit the ground? Show the work that leads to your answer.

$$
\begin{array}{rlrl}
h(t)=-16 t^{2}+1362 & & \text { The egg will hit } \\
h(t)=0 & =-16 t^{2}+1362 & \text { after } \sqrt{\frac{1362}{10}} \mathrm{sec} . \text { w } \\
16 t^{2}=1362 & t= \pm \sqrt{\frac{1362}{16}} \quad 9.226 \mathrm{sec} .
\end{array}
$$

(f) Find the velocity, in $\mathrm{ft} / \mathrm{sec}$, of the egg as it hits the ground.

$$
\begin{aligned}
& \text { from (c) } v(t)=h^{\prime}(t)=-32 t \\
& \text { from(e) } t=9.226 \ldots \mathrm{sec}=A \\
& v(A)=-295.242 \mathrm{ft} / \mathrm{gec}
\end{aligned}
$$

18. Find the values of a and/or $b(a \neq 0)$, if they exist, such that f is differentiable for all x. As always, show the work that leads to your answer.
(a) $f(x)=\left\{\begin{array}{l}a x^{3}, x \leq 2 \\ x^{2}+b, x>2\end{array}\right.$
$\begin{aligned}(x)=f(c)= & \lim _{x \rightarrow c^{+}} f(x) \\ & \text { (b) } f(x)=\left\{\begin{array}{l}\cos x, x<\frac{\pi}{2} \\ \lim _{x \rightarrow C^{-}} f^{\prime}(x)=\lim _{x \rightarrow c^{+}} f^{\prime}(x) \\ a x+b, x \geq \frac{\pi}{2}\end{array}\right.\end{aligned}$

Continuity: $\lim _{x \rightarrow 2^{-}} f(x) \quad f(2) \quad \lim _{x \rightarrow 2^{+}} f(x)$

$$
\begin{array}{llr}
\lim _{x \rightarrow 2^{-}} a x^{3} & a(2)^{3} & \begin{array}{l}
x \rightarrow 2^{+} \\
a(2)^{3}
\end{array} \\
& 8 a & \lim _{x \rightarrow 2^{+}} x^{2}+b \\
& & 4+b
\end{array}
$$

Derivatives $\lim _{x \rightarrow 2^{-}} f^{\prime}(x) \quad \lim _{x \rightarrow 2^{+}} f^{\prime}(x)$
$x \rightarrow 2^{-} \quad x \rightarrow 2^{+}$

$$
\begin{array}{cc}
3 a(-2)^{2} & 2(2) \\
12 a & 4
\end{array}
$$

To be diffable at $x=2$
Need $8 a=4+b$ and $4=12 a$
$\frac{1}{3}=a$

$$
\begin{array}{cc}
\lim _{x \rightarrow 2^{-}} 3 a x^{2} & \lim _{x \rightarrow 2^{+}} 2 x \\
3 a(-2)^{2} & 2(2)
\end{array}
$$

$$
4=12 a
$$

$8\left(\frac{1}{3}\right)=4+b$
(c) $f(x)=\left\{\begin{array}{l}\sin x, x \leq 0 \\ a x, x>0\end{array}\right.$
$-\frac{4}{3}=b$

$$
\begin{array}{ccc}
\text { Continuity } & \lim _{x \rightarrow 0^{-}} f(x) & f(0)
\end{array} \lim _{x \rightarrow 0^{+}} f(x)
$$

$\therefore \operatorname{since} D=0=0, f(x)$ is cont. $\forall x$.

$$
\text { Derivative } \begin{array}{cc}
\lim _{x \rightarrow 0^{-}} f^{\prime}(x) & \lim _{x \rightarrow 0^{+}} f^{\prime}(x) \\
\lim _{x \rightarrow 0^{-}} \cos x & \lim _{x \rightarrow 0^{+}} a \\
1 & a
\end{array}
$$

To be diff'able $\forall x, a=1$.

Continuity $\lim _{x \rightarrow \frac{\pi}{2}^{-}} f(x) \quad f\left(\frac{\pi}{2}\right) \quad \lim _{x \rightarrow \frac{\pi}{2}^{+}} f(x)$
$\begin{array}{cc}\cos \frac{\pi}{2} & \frac{\pi}{2} a+b \quad \frac{\pi}{2} a+b \\ 0 & \end{array}$
Derivatives $\lim _{x \rightarrow \frac{\pi}{2}^{-}} f^{\prime}(x) \quad \lim _{x \rightarrow \frac{\pi}{2}^{+}} f^{\prime}(x)$

$$
\begin{array}{cc}
\lim _{x \rightarrow \frac{\pi}{2}^{-}}-\sin x & \lim _{x \rightarrow \frac{\pi}{2}^{+}} a \\
-\sin \frac{\pi}{2} & a \\
-1 &
\end{array}
$$

To be aiff'able $\forall x, a=-1$ and $D=\frac{\pi}{2} a+b$
$0=\frac{\pi}{2}(-1)+b$
$\frac{\pi}{2}=b$
$a=-1 \quad 4 \quad b=\frac{\pi}{2}$
(d) $f(x)=\left\{\begin{array}{l}a x^{2}, x \leq 1 \\ b \sqrt{x}, x>1\end{array}\right.$

Contimity $\lim _{x \rightarrow 1^{-}} f(x) \quad f(1) \quad \lim _{x \rightarrow 1^{+}} f(x)$

$$
\lim _{x \rightarrow 1^{-}} a x^{2} \quad a \quad \lim _{x \rightarrow 1^{+}} b x^{1 / 2}
$$

a
Derivatives $\lim _{x \rightarrow 1^{-}} f^{\prime}(x) \quad \lim _{x \rightarrow 1^{+}} f^{\prime}(x)$

$$
\lim _{x \rightarrow 1^{-}} 2 a x \quad \lim _{x \rightarrow 1^{+}} \frac{1}{2} b x^{-1 / 2}
$$

$2 a \quad \frac{1}{2} b$
To bediffable $\forall x$ need $a=b$
and $2 a=\frac{1}{2} b$

$$
\begin{aligned}
2 a & =\frac{1}{2} a \\
a & =0(\text { given } a \neq 0)
\end{aligned}
$$

Since $a \neq 0, \exists$ nosuch values for $a \not \& b$ such that $f^{\prime}(x)$ is diff' able at $x=1$.

Multiple Choice

D 19. The function $f(x)=3 \sqrt[3]{x^{2}}+x-1$ is differentiable for which values of x ?
(A) all real numbers
(B) $x \in[0, \infty)$
(C) $x \in(0, \infty)$
(D) for all $x \neq 0$
(E) $(-\infty, 0)$

$$
\begin{aligned}
f(x) & =3 x^{2 / 3}+x-1 \quad \text { how do yuis a cusp? } \\
f^{\prime}(x) & =2 x^{-1 / 3}+1 \\
& =\frac{2}{\sqrt[3]{x}}+1 \quad f \text { is diffiable } \forall x, x \neq 0 .
\end{aligned}
$$

E 20. The function $f(x)=|x+4|-\sqrt[5]{x^{3}}+\frac{1}{x-3}$ is differentiable for all x-values except

II. $x=0 \quad$ shaip colde VA at $x=3$!
III. $x=3 \checkmark \quad x=-4$
(A) I only
(B) I and II only
(C) I and III only
(D) III only
((E)) I, II, and III
21. On the interval $[0,2 \pi)$, for which of the following x-values is the function $f(x)=\tan x$ not differentiable?
I. $x=0$

III. $x=\frac{3 \pi}{2}$
(A) I only
(B) II only
(C) III only
(D) I and II only
(E) I and III only (F) II and III only (G) I, II, and III (H) None of these

