Name \qquad Date \qquad Period \qquad

Worksheet 5.4-Concavity and the Second Derivative Test

Show all work. No calculator unless otherwise stated.

Multiple Choice

1. If $a<0$, the graph of $y=a x^{3}+3 x^{2}+4 x+5$ is concave up on
(A) $\left(-\infty,-\frac{1}{a}\right)$
(B) $\left(-\infty, \frac{1}{a}\right)$
(C) $\left(-\frac{1}{a}, \infty\right)$
(D) $\left(\frac{1}{a}, \infty\right)$
(E) $(-\infty,-1)$
$y^{\prime}=3 a x^{2}+6 x+4 \quad \begin{aligned} & \text { Since } a<0 \\ & \text { the graph of }\end{aligned}$
$y^{\prime \prime}=6 a x+6=0 \quad \begin{aligned} & \text { the graph of } y \text { comes in } \\ & \text { top e exits the bottom }\end{aligned}$

$$
\begin{aligned}
& 6 a x=-6 \\
& x=\frac{-6}{6 a}
\end{aligned}
$$

$$
\begin{aligned}
& y \text { is concave up on }\left(-\infty,-\frac{1}{a}\right) \\
& y \text { is concave down on }\left(\frac{-1}{a}, \infty\right)
\end{aligned}
$$

2. If $f(0)=f^{\prime}(0)=f^{\prime \prime}(0)=0$, which of the following must be true about the graph of f ?
(A) There is a local max at the origin \quad (B) There is a local min at the origin
(C) There is no local extremum at the origin
(D) There is a point of inflection at the origin
(E) There is a horizontal tangent at the origin

3. The x-coordinates of the points of inflection of the graph of $y=x^{5}-5 x^{4}+3 x+7$ are
(A) 0 only
(B) 1 only
(C) 3 only
(D) 0 and 3
(E) 0 and 1

$$
\begin{aligned}
& y^{\prime}=5 x^{4}-20 x^{3}+3 \\
& y^{\prime \prime}=20 x^{3}-60 x^{2} \\
& y^{\prime \prime}=20 x^{2}(x-3)=0 \\
& x=0, x=3
\end{aligned}
$$

$$
\begin{aligned}
& x=0, x=3 \\
& \text { possible inflection values }
\end{aligned}
$$

$$
\frac{x}{y^{\prime}} \|-\left.1\right|^{0}
$$

$$
(p . i, v, s)
$$

y has an inflection volveat $x=3$
Since $y^{\prime \prime}$ changes from neg to pas at $x=3$
4. Which of the following conditions would enable you to conclude that the graph of f has a point of inflection at $x=c$?
(A) There is a local max of f^{\prime} at $x=c$
(D) The sign of f^{\prime} changes at $x=c$

$$
\begin{aligned}
& \text { X the local extrema of } f^{\prime}(x) \\
& \text { are the inflection values of } f(x) \text {. } \\
& \text { * Since } f^{\prime} \text { has a local max } e x=c \text {, } \\
& \text { its derivative, namely } f^{\prime \prime} \text {, changes } \\
& \text { from pos to neg at } x=c \text {. }
\end{aligned}
$$

(B) $f^{\prime \prime}(c)=0$
(C) $f^{\prime \prime}(c)$ does not exist
(E) f is a cubic polynomial and $c=0$
5. Let f be a twice-differentiable function on $(-\infty, \infty)$ such that the equation $f(x)=0$ has exactly 3 realigleaeker 1 ! roots, all distinct. Consider the following possibilities:
I. the equation $f^{\prime}(x)=0$ has at most 3 distinct roots.
II. the equation $f^{\prime \prime}(x)=0$ has at least 1 root. Which of these properties will f have?
(A) I only
(B) II only
(C) I and II

6. If f is a continuous function on $(-5,3)$ whose graph is given at right, which of the following properties are satisfied?
I. $f^{\prime \prime}(x)^{\text {b }}>0$ on $(-2,1)$, False, cc down on $(-1,1)$
II. f has exactly 2 local extrema, True (in Red)
III. f has exactly 4 critical points, True, in Green
(A) I, II, and III
(B) II only
(C) I and III
(D) I and II (E) III only (F) II and III (G) I only

Free Response

7. The figure above shows the graph of f^{\prime}, the derivative of the function f, for $-7 \leq x \leq 7$. The graph of f^{\prime} has horizontal tangent lines at $x=-3, x=2$, and $x=5$, and a vertical tangent line at $x=3$.
(a) Find all the values of x, for $-7<x<7$, at which f attains a relative minimum. Justify your answer.

$$
\begin{aligned}
& f^{\prime}=0 \text { at } x=-5,-1,5 \\
& f^{\prime}=D N E \text { at } x=3
\end{aligned}
$$

$$
\begin{aligned}
& \text { * } f \text { has a relative min at } x=-1 \text {, since } f^{\prime}(x) \text { changes from } \\
& \text { neg to pos at } x=-1 \text {. }
\end{aligned}
$$

(b) Find all the values of x, for $-7<x<7$, at which f attains a relative maximum. Justify your answer.

$$
\begin{aligned}
& f^{\prime}=0 \text { at } x=-5,-1,5 \\
& f^{\prime}=D N E \text { at } x=3
\end{aligned} \quad \text { *f has a relative max at } x=-5 \text {, since } f^{\prime}(x) \text { changes from }
$$

(c) Find all the values of x, for $-7<x<7$, at which $f^{\prime \prime}(x)<0$.
$f^{\prime \prime}<0$ when the slopes of $f^{\prime}(x)$ are defined and negative, that is, when the graph of f^{\prime} is decreasing
 $f^{\prime \prime}(3)=D N E$, so we must step over it.
(d) At what value of x, for $-7<x<7$, does f attain its absolute maximum? Justify your answer. For now, letls answer this question by sketching a possible graph of $f(x)$ assuming that $f(-7)=0$ (since we are only interested in Relative change in y-values from our starting value.

8. Let h be a function defined for all $x \neq 0$ such that $h(4)=-3$ and the derivative of h is given by

$$
h^{\prime}(x)=\frac{x^{2}-2}{x}, \forall x \neq 0
$$

(a) Find all values of x for which the graph of h has a horizontal tangent, and determine whether h has a local maximum, a local minimum, or neither at each of these values. Justify your answers.
$\begin{array}{lc}h^{\prime}(x)=0 & h^{\prime}(x)=D N E \\ x^{2}-2=0 & X=0 \\ X=-\sqrt{2}, x=\sqrt{2} & \begin{array}{ll}X & N_{0}+\text { a civ. } \\ \text { Hort. tangs. }\end{array} \\ \begin{array}{ll}\text { but it is a discon } \\ \text { and goes in the chart }\end{array}\end{array}$
(b) On what intervals, if any, is the graph of h concave up? Justify your answer.

$$
\begin{aligned}
& h^{\prime}=\frac{x^{2}-2}{x} \\
& h^{\prime \prime}=\frac{(x)(2 x)-\left(x^{2}-2\right)}{x^{2}} \quad \text { So } h(x) \text { is concave up } \\
& \text { on }(-\infty, 0) \cup(0, \infty) \\
& h^{\prime \prime}=\frac{2 x^{2}-x^{2}+2}{x^{\prime \prime}=\frac{x^{2}+2}{x^{2}}>0 \forall x \neq 0 \rightarrow \text { no inflection values }}
\end{aligned}
$$

(c) Write an equation for the tangent to the graph of h at $x=4$.

$$
\begin{aligned}
& h(4)=-3 \\
& h^{\prime}(4)=\frac{4^{2}-2}{4}=\frac{14}{4}=\frac{7}{2} \\
& \text { eq: } y=-3+\frac{7}{2}(x-4)
\end{aligned}
$$

(d) Does the line tangent to the graph of h at $x=4$ lie above or below the graph of h for $x>4$? Why? Since $h(x)$ is concave up for all $x \neq 0$, Since $h(x)$ is concent lines are Below the curve of $h(x)$ ex) $h(x)$
9. A cubic polynomial function f is defined by $f(x)=4 x^{3}+a x^{2}+b x+k$, where a, b, and k are constants. The function f has a local minimum at $x=-1$, and the graph of f has a point of inflection at $x=-2$. Find the values of a and b.

$$
f^{\prime}(-1)=0
$$

$$
f^{\prime \prime}(-2)=0
$$

$$
\begin{gathered}
f^{\prime}(x)=12 x^{2}+2 a x+b, f^{\prime \prime}(x)=24 x+2 a \\
f^{\prime}(-1)=0=12-2 a+b \quad f^{\prime \prime}(-2)=0=-48+2 a \\
2 a-b=12
\end{gathered}
$$

$$
\begin{gathered}
\text { So } 2 a-b=12 \\
\text { becomes } 2(24)-b=12 \\
b=40-12 \\
b=36
\end{gathered}
$$

10. For each of the following, i) find the open intervals on which f is increasing or decreasing, ii) find the local max and min values of f, and iii) find the intervals of concavity and inflection points. Domain: $x>0$
(a) $f(x)=\frac{x^{2}}{x^{2}+3}$
(b) $f(x)=\cos ^{2} x-2 \sin x, 0 \leq x \leq 2 \pi$
(c) $f(x)=\frac{\ln x}{\sqrt{x}}$
$f(x)=\frac{\ln x}{x^{2}}, f^{\prime}(x)=\left(x^{\prime 2}\right)\left(\frac{1}{x}\right)-(\cos x)\left(\frac{1}{2} x^{\prime} x\right)(2 x)$
$f(x)=(\operatorname{cx})^{2}-2 \sin x$

$$
\begin{aligned}
& f^{\prime}(x)=\frac{\left(x^{2}+3\right)(2 x)-\left(x^{2}\right)(2 x)}{\left(x^{2}+3\right)^{2}} \\
& f^{\prime}(x)=\frac{2 x\left[x^{2}+3-x^{2}\right]}{\left(x^{2}+3\right)^{2}}
\end{aligned}
$$

$f^{\prime}(x)=2(a x) x^{2}(\sin x)-2 \cos x$
$f^{\prime \prime}(x)=-2 \sin x \cos x-2 \cos x$
$f^{\prime}(x)=-2 \cos x(\sin x+1)=0$
$f^{\prime}(x)=\frac{6 x}{\left(x^{2}+3\right)^{2}}, f^{\prime}(x)=0<x=0 c \cdot x$
$f^{\prime}(x)=0 ; \cos x=0, \sin x-1$

 $x \| e^{e^{2}} e^{3}$ * fir inc on $(0, e) \& \operatorname{dec}$ on (e, ∞)
$f^{\prime}| |+\mid-\quad$ * f has a relative max $e x=e^{2}$ since f^{\prime}
Changes from poss to ne y at $x=e^{2}$.
 $f^{\prime \prime}(x)=\frac{2 x^{3 / 2}\left(-\frac{1}{x}\right)-(2-\ln x)\left(3 x^{1 / 2}\right)}{\left(2 x^{2 / 2}\right)^{2}}=\frac{-2 x^{1 / 2}-6 x^{1 / 2}+3 x^{1 / n} \ln x}{4 x^{3}}$ $f^{\prime \prime}(x)=\frac{-8 x^{1 / 2}+3 x^{2} \ln x}{4 x^{3}}=\frac{x^{1 / 2}[3 \ln x-8]}{4 x^{3}}=\frac{3 \ln x-8}{4 x^{3 / 2}}=f^{11}$
 $\frac{x}{x} \|^{2 / 13} e^{e^{2 / 3}}-1+$ * f is concave down on $\left(0, e^{8 / 3)}\right.$ and concave vp on $\left(e^{8 / 5}, 8\right)$.
f is concave up on $(-1,1) \&$ concave down on $(-\infty,-1) \cup(1, \infty)$
f has inflection values at $x=-1$, since $f^{\prime \prime}$ "changes from neg to pos at $x=-1$
11. Find the local max and min values of $f(x)=x+\sqrt{1-x}$ using both the First and Second Derivative

Tests. Which method do you prefer?

12. Sketch the graph of a function that satisfies all of the following conditions.
(a) $f^{\prime}(x)>0$ for all $x \neq 1$, VA at $x=1, f^{\prime \prime}(x)>0$ if $x<1$ or $x>3$, and $f^{\prime \prime}(x)<0$ if $1<x<3$.
(b) $f^{\prime}(x)>0$ if $|x|<2, f^{\prime}(x)<0$ if $|x|>2, f^{\prime}(2)=0, \lim _{x \rightarrow \infty} f(x)=1, f(-x)=-f(x), f^{\prime \prime}(x)<0$ if $0<x<3$, and $f^{\prime \prime}(x)>0$ if $x>3$
13. Coffee is being poured into Mr. Korpi's mug (shown below) at a constant rate (measured in volume per unit of time). Sketch a rough graph of the depth of the coffee in the mug as a function of time. Account for the shape of the graph in terms of concavity. What is the significance of the inflection point?

