$\qquad$ Date $\qquad$ Period $\qquad$

## Worksheet 7.3-Separable Differential Equations

Show all work. No Calculator unless specified.

## Multiple Choice

1. (OK, so you can use your calculator right away on a non-calculator worksheet. Use it on this one.)A sample of Kk-1234 (an isotope of Kulmakorpium) loses $99 \%$ of its radioactive matter in 199 hours. What is the half-life of $\mathrm{Kk}-1234$ ?
(A) 4 hours
(B) 6 hours
(C) 30 hours
(D) 100.5 hours
(E) 143 hours

(1) $y=100 e^{k t}$

199 K
$\begin{aligned}(2) & =100 e^{199 k} \\ \frac{1}{100} & =e^{199 k} \\ \left(\frac{1}{100}\right) & =199 k\end{aligned}$
$\ln \left(\frac{1}{100}\right)=199 \mathrm{~K}$
$K=\frac{\ln (1 / 100)}{199}$
$(199,1)(2)$

$$
\frac{199 \ln \left(\frac{1}{2}\right)}{-\ln (100)}=t
$$

$K=\frac{-\ln (100)}{199}$
So $y=100 e^{\left(-\frac{\ln 100}{199} t\right)}$
For half-life, $1 e+y=\frac{100}{2}=50$

$$
\begin{gathered}
90=100 e^{\left(-\frac{\ln 100)}{199}\right) t} \\
\frac{1}{2}=e^{-\frac{\ln (100)}{199} t}
\end{gathered}
$$

$$
\ln \left(\frac{1}{2}\right)=\frac{-\ln (100)}{199} t
$$

$$
\begin{aligned}
& t=\frac{-199 \ln (2)}{-\ln (100)} \\
& t=\frac{199 \ln 2}{\ln 100 \mathrm{yrs}} \sim 29.952 \mathrm{yrs}
\end{aligned}
$$

$$
\begin{array}{r}
t=\frac{-199 \ln }{-\ln 16} \\
t=\frac{199 \ln 2}{\ln 100} \\
\text { ectly proportional to } y ? \\
L t
\end{array}
$$


2. In which of the following models is $\frac{d y}{d t}$ directly proportional to $y$ ?
I. $y=e^{k t}+C$
II. $y=C e^{k t}$
III. $y=28^{k t}$
IV. $y=3\left(\frac{1}{2}\right)^{3 t+1}$
(A) I only (B) II only
(C) I and II only
(D) II and III only
(E) II, III, and IV
(F) all of them
3. (Use your calculator on this one, too, but get the exact answer first.) The rate at which acreage is being consumed by a plot of kudzu is proportional to the number of acres already consumed at time $t$. If there are 2 acres consumed when $t=1$ and 3 acres consumed when $t=5$, how many acres will be consumed when $t=8$ ?
(A) 3.750
(B) 4.000
(C) 4.066
(D) 4.132
(E) 4.600


## Free Response

For problems $4-13$, find the general solution to the following differential equations, then find the particular solution using the initial condition.

10. $\frac{d y}{d x}=(\cos x) e^{y+\sin x}, y(0)=0$
11. $\frac{d y}{d x}=e^{x-y}, y(0)=2$
12. $\frac{d y}{d x}=-2 x y^{2}, y(1)=0.25$ $\frac{d y}{d x}=\cos x \cdot e^{y} \cdot e^{\sin x}$
$\int e^{-y} d y=\int \cos x \cdot e^{\sin x} d x$
$\frac{d y}{d x}=e^{x} \cdot e^{-y}$
$-e^{-y}=e^{\sin x}+c$
$\int e^{y} d y=\int e^{x} d x$
$\frac{e^{y}=e^{x}+c}{\sin ^{2} \ln \frac{y=\ln \left(e^{x}+c\right)}{y+(0,2):}} \frac{\frac{A+c)}{2=\ln (1+c)}}{\frac{2}{2}=(c)}$
$\frac{e^{2}=1+c}{c=e^{2}-1}$
$\begin{aligned} & e^{-y}=-e \\ &-y=\ln \left(c-e^{\sin }\right. \\ & \text { gen } \\ & \text { sol } \\ & y=-\ln (c-e \\ & \frac{1+(0,0):}{} \\ & 0=-\ln \left(c-e^{0}\right) \\ & 0=\ln (c-1) \\ & e^{0}=c-1 \\ & c=1+1\end{aligned}$
So $y=\ln \left(e^{2}+e^{2}-1\right)$
$d x$
$\int y^{-2} d y=\int-2 x d x$
$-y^{-1}=-x^{2}+c$
$\frac{1}{y}=x^{2}+c \quad(-c=c)$
$y=\frac{1}{x^{2}+c}$
$\frac{A+\left(1, \frac{1}{4}\right):}{1+}$
$\frac{1}{1+c}$
$4=1+c$
$\frac{1}{c}=3$
$s_{0}=\frac{1}{x^{2}+3}$
$y=\ln \left(2 e^{2}-1\right)$

13. $\frac{d y}{d x}=\frac{4 \sqrt{y} \ln x}{x}, y(e)=1$
$\int y^{-1 / 2} d y=\int 4\left(\frac{1}{x}\right) \ln x d x$
$2 y^{1 / 2}=4\left(\frac{1}{2}\right)(\ln x)^{2}+C$
$2 \sqrt{y}=2 \ln ^{2} x+c$
$\sqrt{y}=\ln ^{2} x+c \quad * \frac{c}{2}=c$
$y=\left(l^{2} x+c\right)^{2}$
$\begin{aligned} y & =\left(\ln ^{2} x+c\right)^{2} \quad \text { (gen solution) } \\ \text { for } y(c)=1: 1 & =(\ln x)^{2}+\lambda^{2} \\ 1 & =(1+c) \quad \text { so }, y=\left(\ln ^{2} x\right)^{2} \\ 1 & =0\end{aligned}$
$1=\begin{gathered}(1+c) \quad \text { or }, y=(\ln x)^{2} \\ c=0\end{gathered} \quad$ or $y=\ln ^{4} x$

For problems $14-17$, find the solution of the differential equation $\frac{d y}{d t}=k y$ that satisfies the given conditions.
14. $k=1.5, y(0)=100$

15. $k=-0.5, y(0)=200$

$y=200 e$
16. $y(0)=50, y(5)=100$ $y=C e^{k t} 5 k$ $100=50 e^{5 k}$ $2=e^{5 k}$


Page 3 of 6
17. $y(1)=55, y(10)=30$ (divide one by the other)

(2):(1):

$$
\begin{aligned}
& 55\left(\frac{30}{55}\right)=9 k \\
& k=\frac{1}{9} \ln \left(\frac{6}{11}\right)
\end{aligned}
$$

$$
\begin{aligned}
5055 & =C e \\
55 & =C\left(\frac{6}{11}\right)^{1 / 9} \\
C & =55 \cdot\left(\frac{6}{11}\right)^{-1 / 9} \\
50 y & =55\left(\frac{6}{11}\right)^{-1 / 9} \cdot e^{\left(\frac{1}{9} \ln \left(\frac{1}{11}\right)\right) t}
\end{aligned}
$$

$$
y=55\left(\frac{6}{11}\right)^{-1 / 9} \cdot\left(\frac{6}{11}\right)^{t / 9}
$$

$$
y=55\left(\frac{6}{11}\right)^{(t-1) / 9}
$$

## 18. AP 2010B-5 (No Calculator)

Consider the differential equation $\frac{d y}{d x}=\frac{x+1}{y}$.
(a) On the axes provided, sketch a slope field for the given differential equation at the twelve points indicated, and for $-1<x<1$, sketch the solution curve that passes through the point $(0,-1)$.

(b) While the slope field in part (a) is drawn at only twelve points, it is defined at every point in the $x y$-plane for which $y \neq 0$. Describe all points in the $x y$-plane, $y \neq 0$, for which $\frac{d y}{d x}=-1$.

$$
\begin{aligned}
& \frac{x+1}{y}=-1 \\
& x+1=-y \\
& y=-x-1
\end{aligned}\left\{\begin{array}{l}
\text { so } \frac{d y}{d x}=-1 d x \\
\text { for all pts } y \neq 0 \text { on the } \\
\text { line } y=-x-1 .
\end{array}\right.
$$

(c) Find the particular solution $y=f(x)$ to the given differential equation with the initial condition

$$
\begin{aligned}
& f(0)=-2 . \quad \frac{d y}{d x}=\frac{x+1}{y} \\
& \int y d y=\int(x+1) d x \\
& \frac{1}{2} y^{2}=\frac{1}{2} x^{2}+x+c \\
& \begin{array}{c}
\sin ^{2}=x^{2}+2 x+C \quad(2 c=c) \\
\frac{A+(0,-2):}{x^{2}+2 x+C} \\
-2= \pm \sqrt{c} \\
C=4
\end{array} \\
& \text { So } y=-\sqrt{x^{2}+2 x+4} * \begin{array}{l}
c \text { negatives } \\
\text { since } f(0)
\end{array}=-2
\end{aligned}
$$

19. AP 2006-5

Consider the differential equation $\frac{d y}{d x}=\frac{1+y}{x}$, where $x \neq 0$.
(a) On the axes provided, sketch a slope field for the given differential equation at the eight points indicated.

(b) Find the particular solution $y=f(x)$ to the differential equation with the initial condition $f(-1)=1$ and state its domain.
$\frac{d y}{d x}=\frac{1+y}{x}$
$\int \frac{1}{1+y} d y=\int \frac{1}{x} d x$
$\ln |1+y|=\ln |x|+c$ $|1+y|=e^{\ln (x \mid+c}$
$1+y=C e^{\ln |x|}$
$\operatorname{sen} \operatorname{son}$
$y=C|x|-1$
$\frac{A+(-1,1):}{1=C|-1|-1}$
$1=c^{-1}$
$\begin{aligned} & \mid c-2 \\ & y=2|x|-1\end{aligned}$

* Since $\frac{d y}{d x}$ has a discontinuity
at $x=0$ \& question also tells us
that $x \neq 0$, whichapplies to
All solution curves, too, we
only sketeh/discuss functions
(pass vert line test) that are continues.
Since our initial condition is $x=-1<0$
and since $x \neq 0$, the domain of
$y=2|x|-1$ is restricted to $x<0$.

20. AP 2005-6

Consider the differential equation $\frac{d y}{d x}=-\frac{2 x}{y}$.
(a) On the axes provided, sketch a slope field for the given differential equation at the twelve points indicated.

(b) Let $y=f(x)$ be the particular solution to the differential equation with the initial condition $f(1)=-1$. Write an equation for the line tangent to the graph of $f$ at $(1,-1)$ and use it to approximate $f(1.1) .\left.\quad \frac{d y}{d x}\right|_{(1,-1)}=2$

$$
\begin{aligned}
& \text { eq: } \begin{aligned}
f(x) & =-1+2(x-1) \\
f(1.1) & \approx \mathcal{L}(1.1)=-1+2(1.1-1)
\end{aligned} \\
& \text { "squiggles" } \quad=-1+2 \\
& =-0.8
\end{aligned}
$$

(c) Find the particular solution $y=f(x)$ to the given differential equation with the initial condition $f(1)=-1$. $\frac{d y}{d x}=\frac{-2 x}{y}$
$\int y d y=\int-2 x d x$
$\frac{1}{2} y^{2}=-x^{2}+c$
gen $\begin{aligned} & y^{2}=-2 x^{2}+c \quad(2 c=c) \\ & y= \pm \sqrt{c-2 x^{2}} \\ & A+(1,-1): \\ & -1= \pm \sqrt{c-2}\end{aligned}$.
$1=c-2$
Page 6 of 1 the sketch of this particular


