Name \qquad Date \qquad Period \qquad

Worksheet 5.3-Euler's Method

Show all work. Unless stated, you MAY use a calculator, but show all steps.

1. Answer the following questions.
(a) Given the differential equation $\frac{d y}{d x}=x+2$ and $y(0)=3$. Find an approximation for $y(1)$ by using Euler's method with two equal steps. Sketch your solution.

$$
x=2
$$

$\Delta x=\frac{b-a}{x}=\frac{1-0}{2}=\frac{1}{2}$

x	y	$\frac{d y}{d x}=m$	$\Delta y=m \Delta x$	$y_{\text {new }}=y+\Delta y$
0	3	2	1	4
0	$\frac{1}{2}$	4	$\frac{5}{2}$	$\frac{5}{4}$
1	$\frac{21}{4}$		$\frac{21}{4}$	

$$
\text { So, } f(1) \approx \frac{21}{4} \text { or } 5.25
$$

(b) Solve the differential equation $\frac{d y}{d x}=x+2$ with the initial condition $y(0)=3$, and use your solution to find $y(1)$.

$$
\begin{gathered}
\frac{d y}{d x}=x+2 \\
\int d y=\int(x+2) d x \\
y=\frac{1}{2} x^{2}+2 x+c \\
e(0,3): 3=0+0+c \\
\quad c=3 \\
\text { S, } y=\frac{1}{2} x^{2}+2 x+3 \\
y(1)=\frac{1}{2}+2+3 \\
=5.5 \text { or } \frac{11}{2}
\end{gathered}
$$

(c) The error in using Euler's Method is the difference between the approximate value and the exact value. What was the error in your answer? How could you produce a smaller error using Euler's Method?

$$
\begin{aligned}
& \text { Error }=\mid \text { Actual }- \text { Approximate } \mid \\
&=|5.5-5.25| \\
&=0.25 \text { or } \frac{1}{4} \\
& \text { * To minimize error, we could use more, smaller steps. }
\end{aligned}
$$

2. Suppose a continuous function f and its derivative f^{\prime} have values that are given in the following table. Given that $f(2)=5$, use Euler's Method with two steps of size $\Delta x=0.5$ to approximate the value of $f(3)$.

x	2.0	2.5	3.0
$f^{\prime}(x)$	0.4	0.6	0.8
$f(x)$	5		

x	y	$\frac{d y}{d x}=m$	$\Delta y=m \Delta x$	$y_{\text {new }}=y+\Delta y$
2	5	0.4	$(.4)(.5)=.2$	5.2
2.5	5.2	0.6	$(.6)(.5)=.3$	5.5
3	5.5			

So, $f(3) \approx 5.5$
3. Given the differential equation $\frac{d y}{d x}=\frac{1}{x+2}$ and $y(0)=1$, find an approximation of $y(1)$ using Euler's Method with two steps and step size $\Delta x=0.5$.

x	y	$\frac{d y}{d x}=m$	$\Delta y=m \Delta x$	$y_{\text {new }}=y+\Delta y$
0	1	0.5	0.25	1.25
.5	1.25	0.4	0.2	1.45
1	1.45			
$S_{0}, y(1) \approx 1.45$				

4. Given the differential equation $\frac{d y}{d x}=x+y$ and $y(1)=3$, find an approximation of $y(2)$ using Euler's Method with two equal steps. $\quad x=2, \Delta x=\frac{2-1}{2}=\frac{1}{2}=0.5$

x	y	$\frac{d y}{d x}=m$	$\Delta y=m \Delta x$	$y_{\text {new }}=y+\Delta y$
1	3	4	2	5
1.5	5	6.5	3.25	8.25
2	8.25			

So, $y(z) \approx 8.25$
5. The curve passing through $(2,0)$ satisfies the differential equation $\frac{d y}{d x}=4 x+y$. Find an approximation to $y(3)$ using Euler's Method with two equal steps.

$$
n=2, \Delta x=\frac{3-2}{2}=\frac{1}{2}=0.5
$$

x	y	$\frac{d y}{d x}=m$	$\Delta y=m \Delta x$	$y_{\text {new }}=y+\Delta y$
2	0	8	4	4
2.5	4	14	7	11
3	11			

$$
\delta_{0}, y(3)=11
$$

6. Assume that f and f^{\prime} have the values given in the table. Use Euler's Method with two equal steps to approximate the value of $f(4.4)$.

x	4	4.2	4.4
$f^{\prime}(x)$	-0.5	-0.3	-0.1
$f(x)$	2		

x	y	$\frac{d y}{d x}=m$	$\Delta y=m \Delta x$	$y_{n e w}=y+\Delta y$
4	2	-0.5	-0.1	1.9
4.2	1.9	-0.3	-0.06	1.84
4.4	1.84			

So, $f(4) \approx 1.84$
7. The table gives selected values for the derivative of a function f on the interval $-2 \leq x \leq 2$. If $f(-2)=3$ and Euler's Method with a step size of 0.5 is used to approximate $f(2)$, what is the resulting approximation?

$$
\Delta x=0.5
$$

x	$f^{\prime}(x)$
-2	-0.8
-1.5	-0.5
-1	-0.2
-0.5	0.4
0	0.9
0.5	1.6
1	2.2
1.5	3
2	3.7

x	y	$\frac{d y}{d x}=m$	$\Delta y=m \Delta x$	$y_{\text {new }}=y+\Delta y$
-2	3	-0.8	-0.4	2.6
-1.5	2.6	-0.5	-0.25	2.35
-1	2.35	-0.2	-0.1	2.25
-0.5	2.25	0.4	0.2	2.45
0	2.45	0.9	0.45	2.9
0.5	2.9	1.6	0.8	3.7
1	3.7	2.2	1.1	4.8
1.5	4.8	3	1.5	6.3
2	6.3			

$$
\text { So, } f(2) \approx 6.3
$$

8. Let $y=f(x)$ be the particular solution to the differential equation $\frac{d y}{d x}=x+2 y$ with the initial condition $f(0)=1$. Use Euler's Method, starting at $x=0$ with two steps of equal size to approximate $f(-0.6) . \quad \quad \pi=2, \Delta x=\frac{-0.6-0}{2}=-0.3$

x	y	$\frac{d y}{d x}=m$	$\Delta y=m \Delta x$	$y_{n e w}=y+\Delta y$
0	1	2	-0.6	0.4
-0.3	0.4	0.5	-0.15	0.25
-0.6	0.25			

$$
S_{0}, f(-0.6) \approx 0.25
$$

9. AP 2002-5 (No Calculator)

Consider the differential equation: $\frac{d y}{d x}=2 y-4 x$.
(a) The slope field for the given differential equation is provided. Sketch the solution curve that passes through the point $(0,1)$ and sketch the solution curve that passes through the point $(0,-1)$.

(b) Let f be the function that satisfies the given differential equation with the initial condition $f(0)=1$. Use Euler's method, starting at $x=0$ with a step size of 0.1 , to approximate $f(0.2)$. Show the work that leads to your answer.

x	y	$\frac{d y}{d x}=m$	$\Delta y=m \Delta x$	$y_{\text {new }}=y+\Delta y$	$\Delta x=0.1$
0	1	2	0.2	1.2	
0.1	1.2	2	0.2	1.4	So, $f(0.2) \approx 1.4$
0.2	1.4				

(c) Find the value of b for which $y=2 x+b$ is a solution to the given differential equation. Justify your answer. if $y=2 x+b$, then $\frac{d y}{d x}=2$

$$
\begin{aligned}
\frac{d y}{d x} & =2 y-4 x \\
\text { So, } & =2(2 x+b)-4 x \\
z & =4 x+2 b-4 x
\end{aligned}
$$

(d) Let g be the function that satisfies the given differential equation with the initial condition $g(0)=0$. Does the graph of g have a local extremum at the point $(0,0)$? If so, is the point a local maximum or a local minimum? Justify your answer.

$$
\begin{aligned}
& \frac{d y}{d x}=2 y-4 x \\
& \frac{d^{2} y}{d x^{2}}=2 \frac{d y}{d x}-4 \\
& \left.\frac{d y}{d x}\right|_{(0,0)}=\left.0 \quad \frac{d^{2} y}{d x^{2}}\right|_{(0,0)}=\left.2 \cdot \frac{d y}{d x}\right|_{(0,0)}-4 \\
& \begin{array}{ll}
s_{0}(0,0) \text { is a critical } \\
\text { point of } g(x) . & =2(0)-4
\end{array} \\
& \text { point of } g(x) \text {. } \\
& =-4<0 \\
& \text { So, } g(x) \text { has a } \\
& \text { local max @ }(0,0)
\end{aligned}
$$

10. AP 2005-4 (No Calculator)

Consider the differential equation $\frac{d y}{d x}=2 x-y$.
(a) On the axes provided, sketch a slope field for the given differential equation at the twelve points indicated and sketch the solution curve that passes through the point $(0,1)$.

(b) The solution curve that passes through the point $(0,1)$ has a local minimum at $x=\ln \left(\frac{3}{2}\right)$. What is the y-coordinate of this local minimum?

$$
\begin{gathered}
\text { So, } \frac{d y}{d x}=0 \text { when } x=\ln \left(\frac{3}{2}\right) \\
\text { Subbing: } 2\left(\ln \left(\frac{3}{2}\right)\right)-y=0 \\
y=2 \ln \frac{3}{2}
\end{gathered}
$$

(c) Let $y=f(x)$ be the particular solution to the given differential equation with the initial condition $f(0)=1$. Use Euler's method, starting at $x=0$ with two steps of equal size, to approximate $f(-0.4)$. Show the work that leads to your answer. $u=2, \Delta x=\frac{-0.4-0}{2}=-0.2$

x	y	$\frac{d y}{d x}=m$	$\Delta y=m \Delta x$	$y_{\text {new }}=y+\Delta y$
0	1	-1	0.2	1.2
-0.2	1.2	-1.6	0.32	1.52
-0.4	1.52			

So, $f(-0.4) \approx 1.52$
(d) Find $\frac{d^{2} y}{d x^{2}}$ in terms of x and y. Determine whether the approximation found in part (c) is less than or greater than $f(-0.4)$. Explain your reasoning.

$$
\begin{aligned}
\frac{d y}{d x} & =2 x-y & & \text { * our approximations take place } \\
\frac{d}{d x}: \frac{d^{2} y}{d x^{2}} & =2-\frac{d y}{d x} & & \text { in Quadrat II where } x<0 \& y>0 . \\
& =2-(2 x-y) & & \text { For } x<0 \& y>0, \frac{d^{2} y}{d x^{2}}>0 \text {, so } f(x) \text { is } \\
& =2 \text { of } 6 & & \text { Concave up in Quadrant II so so } \\
& & & 1.52 \text { under approximates } f(-0.4)
\end{aligned}
$$

