\qquad Date \qquad Period \qquad

Worksheet 6.3-Volumes

Show all work. No calculator unless stated.

Multiple Choice

\qquad 1. (Calculator Permitted) The base of a solid S is the region enclosed by the graph of $y=\ln x$, the line $x=e$, and the x-axis. If the cross sections of S perpendicular to the x-axis are squares, which of the following gives the best approximation of the volume of S ?

$$
\begin{aligned}
\begin{array}{l}
\text { (A) } 0.718 \\
\text { Volume }
\end{array} & =\int_{1}^{e}(s(x))^{2} d x \\
& =\int_{1}^{e}(\ln x-0)^{2} d x \\
& =0.718
\end{aligned}
$$

2. (Calculator Permitted) Let R be the region in the first quadrant bounded by the graph of $y=8-x^{3 / 2}$, the x-axis, and the y-axis. Which of the following gives the best approximation of the volume of the solid generated when R is revolved about the x-axis?
(A) 60.3
(B) 115.2
(C) 225.4
(D) 319.7
(E) 361.9

$$
\begin{aligned}
& 8 \int_{\text {PerpenDICular }}^{8} \\
& V_{0} \mid=\pi \int_{0}^{4}(R(x))^{2} d x \\
&=\pi \int_{0}^{4 / 2}\left(\left(8-x^{3 / 2}\right)-(0)\right)^{2} d x \\
&=\pi \int_{0}^{4}\left(8-x^{3 / 2}\right)^{2} d x \\
&=361.911
\end{aligned}
$$

3. Let R be the region enclosed by the graph of $y=x^{2}$, the line $x=4$, and the x-axis. Which of the following gives the best approximation of the volume of the solid generated when R is revolved about the y-axis.
(A) 64π
(B) 128π
(C) 256π
(D) 360
(E) 512

$x=4$
ParaSHELL
$V_{0 l}=2 \pi \int_{0}^{4} r(x) h(x) d x$
$=2 \pi \int_{0}^{4}(x)\left(x^{2}-0\right) d x$
$=2 \pi \int_{0}^{4} x^{3} d x$
$=\left.2 \pi\left[\frac{1}{4} x^{4}\right]\right|_{0} ^{4}$
$=\left.\frac{\pi}{2}\left(x^{4}\right)\right|_{0} ^{4}$
$=\frac{\pi}{2}\left[y^{4}-0^{4}\right]$
$=\frac{256 \pi}{2}$
$=128 \pi$
4. Let R be the region enclosed by the graphs of $y=e^{-x}, y=e^{x}$, and $x=1$. Which of the following gives the volume of the solid generated when R is revolved about the x-axis?
(A) $\int_{0}^{1}\left(e^{x}-e^{-x}\right) d x$
(B) $\int_{0}^{1}\left(e^{2 x}-e^{-2 x}\right) d x$
(C) $\int_{0}^{1}\left(e^{x}-e^{-x}\right)^{2} d x$
(D) $\pi \int_{0}^{1}\left(e^{2 x}-e^{-2 x}\right) d x$
(E) $\pi \int_{0}^{1}\left(e^{x}-e^{-x}\right)^{2} d x$

$$
\begin{aligned}
& \text { PerpenWAStular } \\
& \begin{aligned}
V_{01} & =\pi \int_{0}^{1}\left[R^{2}-r^{2}\right] d x \\
& =\pi \int_{0}^{1}\left[\left(e^{x}-0\right)^{2}-\left(e^{-x}-0\right)^{2}\right] d x \\
& =\pi \int_{0}^{1}\left[e^{2 x}-e^{-2 x}\right] d x
\end{aligned}
\end{aligned}
$$

5. (Calculator Permitted) The base of a solid is the region in the first quadrant bounded by the x-axis, the graph of $y=\sin ^{-1} x$, and the vertical line $x=1$. For this solid, each cross section perpendicular to the x-axis is a square. What is the volume?
(A) 0.117
(B) 0.285
(C) 0.467
(D) 0.571
(E) 1.571

$V=\int_{a}^{b} A(x) d x$
$V=\int_{0}^{1}\left(s^{2}(x)\right) d x$
$V=\int_{0}^{1}\left(\sin ^{-1} x-0\right)^{2} d x$
$V=\int_{0}^{1}\left(\sin ^{-1} x\right)^{2} d x$
$V=0.467$
A
6. Let R be the region in the first quadrant bounded by the graph of $y=3 x-x^{2}$ and the x-axis. A solid is generated when R is revolved about the vertical line $x=-1$. Set up, but do not evaluate, the definite integral that gives the volume of this solid.
(A) $\int_{0}^{3} 2 \pi(x+1)\left(3 x-x^{2}\right) d x$
(B) $\int_{-1}^{3} 2 \pi(x+1)\left(3 x-x^{2}\right) d x$
(C) $\int_{0}^{3} 2 \pi(x)\left(3 x-x^{2}\right) d x$

$$
\begin{array}{rlr}
\text { (D) } \int_{0}^{3} 2 \pi\left(3 x-x^{2}\right)^{2} d x & \text { (E) } \begin{aligned}
& \int_{0}^{3}\left(3 x-x^{2}\right) d x y= \\
& x(3-x)=0
\end{aligned} \\
x(3)=0
\end{array}
$$

zeros: $x=0, x=3$

Free Response

7. (Calculator Permitted) Let R be the region bounded by the graphs of $y=\sqrt{x}, y=e^{-x}$ and the y-axis.
(a) Find the area of R.

$$
\begin{aligned}
& \frac{\text { intersect }}{\sqrt{x}=e^{-x}} \\
& \begin{aligned}
x=0.426=A \text { (streasA) } & \text { or }
\end{aligned}=\int_{0}^{A}(y z-y 1) d x \\
&=0.161 \text { or } 0.162
\end{aligned}
$$

give them
specific names
based on how you
based on how you
enter them into your calculator!
A
(b) Find the volume of the solid generated when R is revolved about the line $y=-1$.

$$
\begin{aligned}
& \frac{\text { PerpenWAStular }}{V=\pi \int_{0}^{A}\left[\left(e^{-x}+1\right)^{2}-(\sqrt{x}+1)^{2}\right] d x} \\
& \text { or }=\pi \int_{0}^{A}\left[(y 2+1)^{2}-(y 1+1)^{2}\right] d x \\
& V=1.630 \text { or } 1.631
\end{aligned}
$$

(c) The region R is the base of a solid. For this solid, each cross section perpendicular to the x-axis is a semicircle whose diameter runs from the graph of $y=\sqrt{x}$ to the graph of $y=e^{-x}$. Find the volume of this solid.

Page 4 of 11

$$
V=0.034 \text { or } 0.035
$$

8. (Calculator Permitted) The base of the volume of a solid is the region bounded by the curve $y=2+\sin x$, the x-axis, $x=0$, and $x=\frac{3 \pi}{2}$. Find the volume of the solids whose cross sections

(c) Equilateral triangles

$$
\begin{aligned}
& V=\int_{0}^{3 \pi / 2} \frac{\sqrt{3}}{4} s^{2}(x) d x \\
& V=\frac{\sqrt{3}}{4} \int_{0}^{3 \pi / 2} y_{1}^{2} d x \\
& V=10.914
\end{aligned}
$$

(b) Rectangles whose height is 3 times the base

$$
V=\int_{0}^{3 \pi / 2}(3 s(x) \cdot s(x)) d x
$$

$$
V=3 \int_{0}^{3 \pi / 2} s^{2}(x) d x
$$

$$
V=3 \int_{0}^{3 \pi / 2}(y 1)^{2} d x=75.617
$$

(d) Isosceles right triangles with a leg on the base

$$
\begin{aligned}
V & =\int_{0}^{3 \pi / 2}\left(\frac{1}{2} s(x) \cdot s(x)\right) \cdot d x \\
V & =\frac{1}{2} \int_{0}^{3 \pi / 2} s^{2}(x) d x \\
V & =\frac{1}{2} \int_{0}^{3 \pi / 2} y 1^{2} d x \\
V & =12.602
\end{aligned}
$$

(e) Isosceles triangles with hypotenuse on the base

$$
\underbrace{v}_{s(x)} V=\frac{1}{4} \int_{0}^{3 \pi / 2} s^{2}(x) d x
$$

$$
V=6.301
$$

(f) Semi-circles

$$
\begin{aligned}
V & =\frac{\pi}{8} \int_{0}^{3 \pi / 2} s^{2}(x) d x \\
V & =\frac{\pi}{8} \int_{0}^{3 \pi / 2} y 1^{2} d x \\
V & =9.898
\end{aligned}
$$

(g) Quarter-circles

$$
V=19.796
$$

9. (Calculator Permitted) Let R be the region bounded by the curves $y=x^{2}+1$ and $y=x$ for $0 \leq x \leq 1$. Showing all integral set-ups, find the volume of the solid obtained by rotating the region R about the

(a) x-axis

PerpenWASHular
$V=\pi \int_{0}^{1}\left[\left(x^{2}+1-0\right)^{2}-(x-0)^{2}\right] d x$ $V=\pi \int_{0}^{1}\left[\left(x^{2}+1\right)^{2}-x^{2}\right] d x$ $V=\pi \int_{0}^{1}\left[y_{1}^{2}-y^{2}\right] d x$ $V=4.817$

$$
\text { (d) the line } x=-1
$$

$$
V=2 \pi \int_{0}^{1}(x+1)\left(x^{2}+1-x\right) d x
$$

$$
V=7.853
$$

(b) y-axis

$V=2 \pi \int_{0}^{1}(x)\left(x^{2}+1-x\right) d x$

$$
V=2.617
$$

(e) the line $y=-1$

PerpenWAshular
$V=\pi \int_{0}^{1}\left[\left(x^{2}+1+1\right)^{2}-(x+1)^{2}\right] d x$
$V=10.053$

$$
V=7.853
$$

$$
V=\pi \int_{0}^{1}\left[(3-x)^{2}-\left(3-\left(x^{2}+1\right)\right)^{2}\right] d x
$$

$$
V=10.890
$$

10. (AP 2010-4) Let R be the region in the first quadrant bounded by the graph of $y=2 \sqrt{x}$, the horizontal line $y=6$, and the y-axis, as shown in the figure below.

(a) Find the area of R.

$$
\left.\begin{array}{rl}
\text { Area } & =\int_{0}^{9}(6-2 \sqrt{x}) d x \\
& =\int_{0}^{9}\left(6-2 x^{1 / 2}\right) d x \\
& =6 x-\left.\frac{4}{3} x^{3 / 2}\right|_{0} ^{9}
\end{array}\right\} \begin{gathered}
\left(54-\frac{4}{3}(9)^{3 / 2}\right)-(0) \\
54-\frac{4}{3}(27) \\
54-36 \\
18
\end{gathered}
$$

(b) Write, but do not evaluate, an integral expression that gives the volume of the solid generated when R is rotated about the horizontal line $y=7$.
PerrenWHAstular

$$
V=\pi \int_{0}^{9}\left[(7-2 \sqrt{x})^{2}-(7-6)^{2}\right] d x
$$

(c) Region R is the base of a solid. For each y, where $0 \leq y \leq 6$, the cross section of the solid taken perpendicular to the y-axis is a rectangle whose height is 3 times the length of its base in region R. Write, but do not evaluate, and integral expression that gives the volume of this solid.

Page 7 of 11 from $y=0$ to $y=9$

$$
\begin{aligned}
\begin{array}{l}
y=2 \sqrt{x} \\
\frac{1}{2} y=\sqrt{x} \\
x=\frac{1}{4} y^{2}
\end{array} & V=3 \int_{0}^{9} s^{2}(y) d y \\
V & =3 \int_{0}^{9}\left(\frac{1}{4} y^{2}\right)^{2} d y \\
\text { or } V & =3 \int_{0}^{9} \frac{1}{16} y^{4} d y \\
V & =\frac{3}{16} \int_{0}^{9} y^{4} d y
\end{aligned}
$$

11. (AP 2009-4) Let R be the region in the first quadrant enclosed by the graphs of $y=2 x$ and $y=x^{2}$, as shown in the figure.

(a) Find the area of R.

$$
\begin{aligned}
\text { Area } & =\int_{0}^{2}\left(2 x-x^{2}\right) d x \\
& =x^{2}-\left.\frac{1}{3} x^{3}\right|_{0} ^{2} \\
& =\left(4-\frac{8}{3}\right)-(0) \\
& =\frac{4}{3}
\end{aligned}
$$

(b) The region R is the base of the solid. For this solid, at each x, the cross section perpendicular to the x-axis has area $A(x)=\sin \left(\frac{\pi}{2} x\right)$. Find the volume of the solid.

$$
\begin{aligned}
& V=\int_{0}^{2}\left(\sin \left(\frac{\pi}{2} x\right)\right) d x \\
& V=-\left.\frac{2}{\pi} \cos \left(\frac{\pi}{2} x\right)\right|_{0} ^{2} \\
& V=-\frac{2}{\pi}[\cos \pi-\cos 0] \\
& \text { or } \\
& V=-\frac{2}{\pi}[-1-1]=\frac{4}{\pi}
\end{aligned}
$$

(c) Another solid has the same base R. For this solid, the cross sections perpendicular to the y-axis are squares. Write, but do not evaluate, an integral expression for the volume of the solid.

12. (AP 2008-1) (Calculator Permitted) Let R be the region bounded by the graphs of $y=\sin (\pi x)=y$ and $y z=y=x^{3}-4 x$, as shown in the figure.

(a) Find the area of R.

$$
\begin{aligned}
& \text { Area }=\int_{0}^{2}(y 1-y z) d x \\
& \text { Area }=4
\end{aligned}
$$

(b) The horizontal line $y=-2$ splits the region R into two parts. Write, but do not evaluate, and integral expression for the area of the part of R that is below this horizontal line.

$$
\begin{aligned}
& \begin{array}{l}
\frac{\text { intersect }}{-2=x^{3}-4 x} \\
x=0.539=A \\
x=1.675=B
\end{array} \quad \text { Area }=
\end{aligned} \int_{0.539}^{1.675}\left(-2-\left(x^{3}-4 x\right)\right) d x
$$

(c) The region R is the base of a solid. For this solid, each cross section perpendicular to the x-axis is a square. Find the volume of this solid.

$$
\begin{aligned}
V & =\int_{0}^{2}(y 1-y z)^{2} d x \\
& =9.978
\end{aligned}
$$

(d) The region R models the surface of a small pond. At all points in R at a distance x from the y-axis, the depth of the water is given by $h(x)=3-x$. Find the volume of water in the pond.

$$
\begin{aligned}
&S(x)=\sin (1) x)-\left(x^{3}-4 x\right) \\
&=y \prime-y_{2}=\int_{0}^{2}(5(x) \cdot h(x)) d x \\
&=0,369
\end{aligned}
$$

13. (AP 2007-1) (Calculator Permitted) Let R be the region in the first and second quadrants bounded above by the graph of $y=\frac{20}{1+x^{2}}$ and below by the horizontal line $y=2$.
(a) Find the area of R.

$$
\begin{aligned}
\text { Area } & =\int_{-3}^{3}\left(\frac{20}{1+x^{2}}-2\right) d x \\
\text { or } & =2 \int_{0}^{3}(y 1-2) d x \\
& =37.961 \sqrt{3}
\end{aligned}
$$

(b) Find the volume of the solid generated when R is rotated about the x-axis.

$$
\begin{aligned}
& V=\pi \int_{-3}^{3}\left[\left(\frac{20^{4}}{1+x^{2}}-0\right)^{2}-(2-0)^{2}\right] d x \\
& V=2 \pi \int_{0}^{3}\left[\left(y_{1}^{2}\right)-4\right] d x \\
& V=1871.190
\end{aligned}
$$

(c) The region R is the base of a solid. For this solid, the cross sections, perpendicular to the x-axis, are semicircles. Find the volume of this solid.

Page 10 of 11

$$
\begin{aligned}
& V=\frac{\pi}{8} \int_{-3}^{0 / 3}\left(\frac{20}{1+x^{2}}-2\right)^{(18)} d x \\
& V=2\left(\frac{\pi}{8}\right) \int_{0}^{3}(y 1-2)^{2} d x \\
& V=174.268
\end{aligned}
$$

14. (AP 2002-1) (Calculator Permitted) Let f and g be the functions given by $f(x)=e^{x}$ and $g(x)=\ln x$. (a) Find the area of the region enclosed by the graphs of f and g between $x=\frac{1}{2}$ and $x=1$.

$$
\begin{aligned}
\text { Area } & =\int_{\frac{1}{2}}^{1}(f(x)-g(x)) d x \\
& =1.222(\sqrt{2})
\end{aligned}
$$

(b) Find the volume of the solid generated when the region enclosed by the graphs of f and g between $x=\frac{1}{2}$ and $x=1$ is revolved about the line $y=4$.

$$
V=\pi \int_{\frac{1}{2}}^{1}\left[(4-g(x))^{2}-(4-1+(x))^{2}\right] d x
$$

$$
V=23.609(16)
$$

(c) Let h be the function given by $h(x)=f(x)-g(x)$. Find the absolute minimum value of $h(x)$ on the closed interval $\frac{1}{2} \leq x \leq 1$, and find the absolute maximum value of $h(x)$ on the closed interval $\frac{1}{2} \leq x \leq 1$. Show the analysis that leads to your answer.

$$
\begin{aligned}
& h(x)=f(x)-g(x) \\
& h(x)=e^{x}-\ln x \\
& h^{\prime}(x)=e^{x}-\frac{1}{x}=0 \sqrt{7} \\
& \quad x=0.567 \ldots=A \text { (storeas } A)
\end{aligned}
$$

By the EVT

$$
\text { (88) }\left\{\begin{array}{l}
h\left(\frac{1}{2}\right)=2.3418 \\
h(A)=2.330 \\
h(1)=2.718
\end{array}\right.
$$

So, the absolute min is 2.330 and the absolute max is $2.7188^{(\sqrt{9})}$

