Name _KE Date \qquad Period \qquad

Worksheet 6.4-Arc Length

Show all work. No calculator unless stated.

Multiple Choice

1. (' 88 BC) The length of the curve $y=x^{3}$ from $x=0$ to $x=2$ is given by

$$
\begin{gathered}
\begin{array}{lll}
\text { (A) } \int_{0}^{2} \sqrt{1+x^{6}} d x & \text { (B) } \int_{0}^{2} \sqrt{1+3 x^{2}} d x & \text { (C) } \pi \int_{0}^{2} \sqrt{1+9 x^{4}} d x \\
y^{\prime}=3 x^{2} & \text { (D) } 2 \pi \int_{0}^{2} \sqrt{1+9 x^{4}} d x & \text { (E) } \int_{0}^{2} \sqrt{1+9 x^{4}} d x \\
\propto=\int_{0}^{2} \sqrt{1+\left(3 x^{2}\right)^{2}} d x \\
\alpha=\int_{0}^{2} \sqrt{1+9 x^{4}} d x
\end{array}
\end{gathered}
$$

2. ('03 BC) The length of a curve from $x=1$ to $x=4$ is given by $\int_{1}^{4} \sqrt{1+9 x^{4}} d x$. If the curve contains the point $(1,6)$, which of the following could be an equation for this curve?

$$
\begin{aligned}
& \text { (A) } y=3+3 x^{2} \\
& \text { (B) } y=5+x^{3} \\
& \text { (C) } y=6+x^{3} \\
& \text { (D) } y=6-x^{3} \\
& \text { (E) } y=\frac{16}{5}+x+\frac{9}{5} x^{5} \\
& \left(f^{\prime}(x)\right)^{2}=9 x^{4} \\
& f^{\prime}(x)=3 x^{2} \\
& f(x)=x^{3}+c \\
& O(1,6): 6=1^{3}+C \\
& \text { So, } f(x)=x^{3}+5
\end{aligned}
$$

3. (Calculator Permitted) Which of the following gives the best approximation of the length of the arc of $y=\cos (2 x)$ from $x=0$ to $x=\frac{\pi}{4} ?$
(A) 0.785
(B) 0.955
(C) 1.0
(D) 1.318
(E) 1.977

$$
y^{\prime}=-2 \sin (2 x)
$$

$$
\begin{aligned}
& \mathcal{L}=\int_{0}^{\pi / 4} \sqrt{1+(-2 \operatorname{sm} k x)^{2} d x} \\
& \mathcal{L}=1.31759 \approx 1.318
\end{aligned}
$$

4. Which of the following gives the length of the graph of $x=y^{3}$ from $y=-2$ to $y=2$?
(A) $\int_{-2}^{2}\left(1+y^{6}\right) \underline{d y}$
(B) $\int_{-2}^{2} \sqrt{1+y^{6}} d y$
(C) $\int_{-2}^{2} \sqrt{1+9 y^{4}} d y$
(D) $\int_{-2}^{2} \sqrt{1+x^{2}} d x$
(E) $\int_{-2}^{2} \sqrt{1+x^{4}} d x$

Horizontal, 3 of 5 choices are dy \& interval $\quad x-3 y^{2}$ given is $y=-2$ to $y=2$

$$
\begin{array}{rl}
x^{\prime}=3 y^{2} & \mathcal{L}
\end{array}=\int_{-2}^{2} \sqrt{1+\left(3 y^{2}\right)^{2}} d y=\int_{-2}^{2} \sqrt{1+9 y^{4}} d y
$$

B 5. Find the length of the curve described by $y=\frac{2}{3} x^{3 / 2}$ from $x=0$ to $x=8$.
(A) $\frac{26}{3}$
(B) $\frac{52}{3}$
(C) $\frac{512 \sqrt{2}}{15}$
(D) $\frac{512 \sqrt{2}}{15}+8$
(E) 96

$$
y^{\prime}=x^{1 / 2}
$$

$$
\begin{aligned}
& \mathscr{L}=\int_{0}^{8} \sqrt{1+\left(x^{1 / 2}\right)^{2}} d x \\
& \mathcal{L}=\int_{0}^{8} \sqrt{1+x} d x
\end{aligned}
$$

$$
\alpha=\int_{0}^{8}(1+x)^{1 / 2} d x
$$

$$
\alpha=\left.\frac{2}{3}(1+x)^{3 / 2}\right|_{0} ^{8}
$$

$$
N=\frac{2}{3}\left[\left(g^{3 / 2}\right)-\left(1^{3 / 2}\right)\right]
$$

$$
\alpha=\frac{2}{3}[27-1]
$$

$$
\rho=\frac{5 z}{3}
$$

A 6. Which of the following expressions should be used to find the length of the curve $y=x^{2 / 3}$ from $x=-1$ to $x=1$?
(A) $2 \int_{0}^{1} \sqrt{1+\frac{9}{4} y} d y$
(B) $\int_{-1}^{1} \sqrt{1+\frac{9}{4}} y d y$
(C) $\int_{0}^{1} \sqrt{1+y^{3}} d y$
(D) $\int_{0}^{1} \sqrt{1+y^{6}} d y$
(E) $\int_{0}^{1} \sqrt{1+y^{9 / 4}} d y$

* Notice all choices are $d \rightarrow$ Horizontal

Solve for x (Horizontal)
\& use symmetry.

$$
\begin{aligned}
& \text { if } y=x^{2 / 3} \\
& \text { then } x=y^{3 / 2} \& x^{\prime}=\frac{3}{2}\left(y^{1 / 2}\right)
\end{aligned}
$$

when $x=1, y=1$;
when $x=0, y=0$
So, double the length
of $x=y^{3 / 2}$ from
$y=0$ to $y=1$
7. (AP BC 2002B-3) (Calculator Permitted) Let R be the region in the first quadrant bounded by the y axis and the graphs of $y=4 x-x^{3}+1$ and $y=\frac{3}{4} x$.

(a) Find the area of R.

intersect

$y_{1}=y z$
$x=1.940=A$ (stress A)

(b) Find the volume of the solid generated when R is revolved about the x-axis.

$$
\begin{aligned}
& \begin{array}{l}
\text { PerpenWHASHular } \\
V=\pi \int_{0}^{A}\left[(y 1-0)^{2}-(y z-0)^{2}\right] d x \\
V=\pi \int_{0}^{A}\left(y_{1}^{2}-y z^{2}\right) d x \\
V=57.463
\end{array}
\end{aligned}
$$

(c) Write an expression involving one or more integrals that gives the perimeter of R. Do not evaluate.

$$
\begin{aligned}
& y=4 x-x^{3}+1 \quad \text { Linear Slant Distance } \\
& y^{\prime}=4-3 x^{2} \quad \text { between }(0,0) \&\left(A, \frac{3}{4} A\right)=(1.940,1.455) \\
& \frac{C}{\text { Vertical Distance }} D=\sqrt{(1.940-0)^{2}+(1.455-0)^{2}} \quad \text { So, Perimeter }=P \\
& =1-0 \\
& =1
\end{aligned}
$$

8. (AP BC 2011B-4) The graph of the differentiable function $y=f(x)$ with domain $0 \leq x \leq 10$ is shown in the figure at right. The area of the region enclosed between the graph of f and the x-axis for $0 \leq x \leq 5$ is 10 , and the area of the region enclosed between the graph of f and the x-axis for $5 \leq x \leq 10$ is 27 . The arc length for the portion of the graph of f between $x=0$ and $x=5$ is 11 , and the arc length for the portion of the graph of f between $x=5$ and $x=10$ is 18 . The function f has exactly two critical points that are located at $x=3$ and $x=8$.

(a) Find the average value of f on the interval $0 \leq x \leq 5$.

$$
\begin{aligned}
A \cup g=\frac{\int_{0}^{5} f(x) d x}{5-0} & =\frac{1}{5}(-10) \\
& =-2
\end{aligned}
$$

(b) Evaluate $\int_{0}^{10}(3 f(x)+2) d x$. Show the computations that lead to your answer.

$$
\begin{aligned}
& 3 \int_{0}^{10} f(x) d x+\int_{0}^{10} 2 d x \\
& 3[-10+27]+2(10-0)
\end{aligned}\left\{\begin{array}{c}
3[17]+2(10) \\
51+20 \\
71
\end{array}\right.
$$

(c) Let $g(x)=\int_{5}^{\infty} f(t) d t$. On what intervals if any, is the graph of g both concave up and decreasing? Explain your reasoning.

$$
\begin{align*}
& g^{\prime}(x)=f(x)<0 \text { for } x \in(0,5) \\
& g^{\prime \prime}(x)=f^{\prime}(x)=\text { slopes of } f>0 \text { for } x \in(3,8) \\
& \text { Therefore, the overlapping interval } \\
& \text { is for } x \in(3,5) \text { (va } \tag{6}
\end{align*}
$$

(d) The function h is defined by $h(x)=2 f\left(\frac{x}{2}\right)$. The derivative of h is $h^{\prime}(x)=f^{\prime}\left(\frac{x}{2}\right)$. Find the arc length of the graph of $y=h(x)$ from $x=0$ to $x=20$

$$
h^{\prime}(x)=f^{\prime}\left(\frac{x}{2}\right) \quad \mathcal{L}=\int_{0}^{20} \sqrt{\left.1+\left(h^{\prime}(x)\right)\right)^{2}} d x \sqrt{7}
$$

$$
\mathcal{L}=\int_{0}^{20} \sqrt{1+\left(f^{\prime}\left(\frac{x}{2}\right)\right)^{2}} d x
$$

$$
\text { *Need } f^{\prime}\left(\frac{x}{2}\right) \text { to be }
$$

$$
f^{\prime}(u) \text { to use given arc lengths. }
$$

$$
\begin{aligned}
& \frac{u-\operatorname{sub}}{\text { Let } u=\frac{x}{2}} \quad \text { when } x=0, u \\
& \text { (18) } d u=\frac{1}{2} d x \\
& d x=2 d u \\
& \mathcal{L}=\int_{0}^{10} \sqrt{1+\left(f^{\prime}(u)\right)^{2}} \cdot 2 d u \\
& \mathcal{L}=2 \int_{0}^{10} \sqrt{1+\left(f^{\prime}(u)\right)^{2}} d u \\
& \mathcal{L}=2(11+18)=2(29)=58 \text { (99) }
\end{aligned}
$$

