Name \qquad Date \qquad Period \qquad

Worksheet 6.5-L'Hôpital's Rule and Indeterminate Forms

Show all work. No calculator at all. Not one keystroke.

Multiple Choice

C

1. Which of the following gives the value of $\lim _{x \rightarrow 0} \frac{x}{\tan x}$? $\%$
(A) -1
(B) 0
(C) 1
(D) π
(E) Does not exist $\frac{\text { LHopit! }}{\frac{1 H}{\text { 'Ho }}}$
$\lim _{x \rightarrow 0} \frac{1}{\sec ^{2} x}$
$\frac{1}{1^{2}}$
2. Which of the following gives the value of $\lim _{x \rightarrow 1} \frac{1-1 / x}{1-1 / x^{2}}$? $\frac{0}{0}$
(A) Does not exist
(B) 2
(C) 1
(D) $1 / 2$
(E) 0

$$
\frac{\lim _{x \rightarrow 1} \frac{1-x^{-1}}{1-x^{-2}}}{\text { L'Hopit! }_{\lim _{x \rightarrow 1}} \frac{x^{-2}}{2 x^{-3}}} \begin{aligned}
& \lim _{x \rightarrow 1} \frac{x^{3}}{2 x^{2}} \\
& \lim _{x \rightarrow 1} \frac{x}{2}
\end{aligned}
$$

3. Which of the following gives the value of $\lim _{x \rightarrow \infty} \frac{\log _{2} x}{\log _{3} x}$? $\frac{\infty}{\infty}$
(A) 1
(B) $\frac{\ln 3}{\ln 2}$
(C) $\frac{\ln 2}{\ln 3}$
(D) $\ln \left(\frac{3}{2}\right)$
(E) $\ln \left(\frac{2}{3}\right)$
$L^{\text {L'Hopit! }} \underbrace{}_{x \rightarrow \infty} \frac{\frac{1}{x \ln 2}}{\frac{1}{x \ln 3}}$
$\lim _{x \rightarrow \infty} \frac{x \ln 3}{x \ln 2}$
$\frac{\ln 3}{\ln 2}$

E 4. Which of the following gives the value of $\lim _{x \rightarrow \infty}\left(1+\frac{1}{x}\right)^{3 x}$? ।
(A) 0
(B) 1
(C) e
(D) e^{2}

Let

$$
\begin{array}{rlrl}
\begin{aligned}
\text { (A) } 0 & \text { (B) } 1
\end{aligned} & (\text { C) } e & \text { (D) } e^{2} \quad \text { (E) } e^{3} \\
\text { Let } y & =\lim _{x \rightarrow \infty}\left(1+\frac{1}{x}\right)^{3 x} & \\
\ln y & =\lim _{x \rightarrow \infty} 3 x \ln \left(1+\frac{1}{x}\right) \infty \cdot 0 \\
\ln y & =\lim _{x \rightarrow \infty} \frac{3 \ln \left(1+\frac{1}{x}\right)}{x^{-1}} \div \\
0
\end{array}
$$

B 5. What is $\lim _{h \rightarrow 0} \frac{8\left(\frac{1}{2}+h\right)^{8}-8\left(\frac{1}{2}\right)^{8}}{h}$?
(A) 0
(B) $1 / 2$
(C) 1
(D) Does not exist
(E) Cannot be determined from the information given

Method 1: $\frac{0}{0}$

$$
\begin{aligned}
& \frac{\text { L'Hop it! }}{\operatorname{lom}_{h \rightarrow 0}} \frac{0}{} \frac{64\left(\frac{1}{2}+h\right)^{7}}{1} \\
& \frac{64\left(\frac{1}{2}\right)^{7}}{64 \cdot 2} \\
& \frac{1}{2}
\end{aligned}
$$

Method 2 .

D 6. What is $\lim _{x \rightarrow 0} \frac{e^{2 x}-1}{\tan x} ? \%$
(A) -1
(B) 0
(C) 1
(D) 2
(E) Does not exist

$$
\frac{\text { L'Hop it! }}{l_{x \rightarrow 0}} \frac{2 e^{2 x}}{\sec ^{2} x}
$$

$$
\frac{2}{1}
$$

2
7. What is $\lim _{m \rightarrow 0} \frac{1}{m} \ln \left(\frac{2+m}{2}\right)$?
(A) e^{2}
(B) 1
(C) $1 / 2$
(E) 0
(E) Does not exist

Method 1:

$$
\lim _{m \rightarrow 0} \frac{\ln \left(\frac{2+m}{2}\right)}{m}=\ell_{m \rightarrow 0} \frac{\ln \left(1+\frac{1}{2} m\right)}{m}
$$

$$
\sum_{m \rightarrow 0}^{\text {L'Hopit! }} e_{m} \frac{\left(\frac{1}{1+\frac{1}{2} m}\right)\left(\frac{1}{2}\right)}{1}
$$

$$
\frac{1}{2}
$$

D 8. What is $\lim _{n \rightarrow \infty} \frac{4 n^{2}}{10,000 n+n^{2}}$?
(A) 0
(B) $\frac{1}{2,500}$
(C) 1
(D) 4
(E) Does not exist

$$
\frac{4}{1}
$$

$$
4
$$

$$
\begin{aligned}
& \text { E 9. } \lim _{x \rightarrow 0}(1+2 x)^{\csc x}=1^{\infty} \\
& \text { Let } y=\lim _{x \rightarrow 0}(1+2 x)^{\csc x} \\
& \ln y=\lim _{x \rightarrow 0}(\csc x) \ln (1+2 x) \quad \infty \cdot 0 \\
& \ln y=\lim _{x \rightarrow 0} \frac{\ln (1+2 x)}{\sin x} \quad 0 \\
& \ln y\left.=\lim _{x \rightarrow 0} \frac{(\text { (B) } 1}{} \frac{(1+2 x}{\cos x}\right)(2) \\
& \ln y=2 \\
& y=e^{2}
\end{aligned}
$$

Free Response

Find the following limits. Show all work and use L'Hopital's Rule whenever possible. Express your answer in exact form. For example, if the value of the limit is π do not write 3.14
10. $\lim _{\theta \rightarrow 0} \frac{\arctan \theta}{2 \theta} \%$
L'Hopit! $\lim _{\theta \rightarrow 0} \frac{1}{\frac{1+\theta^{2}}{2}}$
11. $\lim _{\theta \rightarrow \pi^{+}} \frac{1}{\sin (\theta-\pi)} \frac{1}{0}$
$+\infty$
$\frac{1}{2}$
(or DNE)

$$
\text { 12. } \lim _{x \rightarrow \pi^{+}} \frac{2 x-2 \pi}{\sin (x-\pi)} \stackrel{0}{0} \lim _{x \rightarrow \pi^{+}} \frac{2}{\cos (x-\pi)}
$$

2

> 13. $\lim _{z \rightarrow \pi^{+}} \sin \left(\frac{1}{z-\pi}\right)$
> $\sin \left(\ell_{z \rightarrow \pi^{+}} \frac{1}{z-\pi}\right)$
> $\lim _{z \rightarrow \infty} \sin z$
> oNE (oscillation)
> * careful here with
> Page 4 of 7
> 14. $\lim _{\alpha \rightarrow 0} \alpha \cdot \cot (2 \alpha)^{0 \cdot \infty}$
> $\lim _{\alpha \rightarrow 0} \frac{\alpha}{\tan (2 \alpha)} \div$
> L'Hopit! $\ell_{\alpha \rightarrow 0} \frac{1}{2 \sec ^{2}(2 \alpha)}$ $\frac{1}{2}$
19. $\lim _{t \rightarrow \infty} \frac{\sin \left(\frac{1}{t}\right)}{\ln t}=0.0$ or $\frac{1}{\infty}$
(Not indeterninate)
20. $\begin{aligned} & \lim _{v \rightarrow \infty} \frac{v^{2}}{e^{-v}} \frac{\infty}{0} \\ &=\infty \cdot \infty \\ & \text { or } \frac{1}{0.0}\end{aligned}$ (or DNE)
21. $\lim _{x \rightarrow 0^{+}} \frac{x^{2} \cdot \sin \left(\frac{1}{x}\right)}{\sin x}$ or $\left.\frac{\sin \infty 0}{0}\right)$ by osillation
24. $\lim _{\theta \rightarrow 0} \pi^{2} \frac{\tan 2 \theta}{\theta \cos 2 \theta} \%$ $\pi^{2} \lim _{\theta \rightarrow 0} \frac{\tan (2 \theta)}{\theta \cdot \cos (2 \theta)}$ $\frac{\text { L'Hopit! }}{\pi^{2} \cdot \lim _{\theta \rightarrow 0} \frac{2 \sec ^{2}(2 \theta)}{\cos (2 \theta)-2 \theta \sin (2 \theta)} \text { \& }}$ (roduct
$\pi^{2} \cdot \frac{2}{1-0} \quad \begin{aligned} & \text { rule }\end{aligned}$

$$
\ln |z|
$$

$$
2 \pi^{2}
$$

25. (AP 2010-5) Consider the differential equation $\frac{d y}{d x}=1-y$. Let $y=f(x)$ be the particular solution to this differential equation with the initial condition $f(1)=0$. For this particular solution, $f(x)<1$ for all values of x.

(c) Find the particular solution $y=f(x)$ to the differential equation $\frac{d y}{d x}=1-y$ with the initial condition $f(1)=0$.

26. (2016-BC4)

Consider the differential equation $\frac{d y}{d x}=x^{2}-\frac{1}{2} y$.
(a) Find $\frac{d^{2} y}{d x^{2}}$ in terms of x and y.
$\frac{d}{\sqrt{x}}: \frac{d^{2} y}{d x^{2}}=2 x-\frac{1}{2} \frac{d y}{d x} V_{1}$
$\frac{d^{2} y}{d x^{2}}=2 x-\frac{1}{2}\left(x^{2}-\frac{1}{2} y\right)(\sqrt{2}$
(b) Let $y=f(x)$ be the particular solution to the given differential equation whose graph passes through the point $(-2,8)$. Does the graph of f have a relative minimum, a relative maximum, or neither at the point $(-2,8)$? Justify you answer.

$$
\begin{aligned}
& \frac{d y}{d x}=x^{2}-\frac{1}{2} y \\
&\left.\frac{d y}{d x}\right|_{(-2,8)}=(-2)^{2}-\frac{1}{2}(8) \\
&=4-4
\end{aligned} \quad \begin{aligned}
\left.\frac{d^{2} y}{d x^{2}}\right|_{(-2,8)} & =-4<0 \\
& =-2(-2)-\frac{1}{2}(0) \\
\delta_{0},(-2,8) \text { is a critical valve of } y=f(x) . & \begin{array}{l}
\text { a relative max } e(-2,8)
\end{array}
\end{aligned}
$$

(c) Let $y=g(x)$ be the particular solution to the given differential equation with $g(-1)=2$.

Find $\lim _{x \rightarrow-1}\left(\frac{g(x)-2}{3(x+1)^{2}}\right)$. Show the work that leads to your answer.

$$
\begin{aligned}
& \lim _{x \rightarrow-1}\left(3(x+1)^{2} \text {, 'Hopi } \sqrt{5} f^{\prime}(1)=d y\right. \\
& =\begin{array}{lll}
\frac{g(-1)-2}{3(-1+1)^{2}} & \lim _{x \rightarrow-1} \frac{g^{\prime}(x)}{6(x+1)^{\prime} \cdot 1} & \begin{array}{ll}
& g(-1)=\left.\frac{d y}{d x}\right|_{(-1,2)}=1-1=0 \\
\frac{0}{0} & \frac{g^{\prime}(-1)}{0}
\end{array}
\end{array} \\
& \begin{array}{ll}
\frac{0}{0} & \frac{g^{\prime}(-1)}{0} \\
\frac{0}{0} & \lim _{x \rightarrow-1} \frac{g^{\prime \prime}(-1)}{6} \\
\frac{-2}{6}=-\frac{1}{3} & \sqrt{7}
\end{array}
\end{aligned}
$$

(d) Let $y=h(x)$ be the particular solution to the given differential equation with $h(0)=2$.
(BC) Use Euler's method starting at $x=0$ with two step of equal size, to approximate $h(1)$.
(AB) Use the linearization of $h(x)$ at $x=0$ to approximate $h(1)$.
(A BVersion) $h(0)=2$, pt: $(0,2) \quad$ So, $\mathscr{L}(x)=2-1(x-0)$

$$
\begin{array}{cc}
h^{\prime}(0)=\left.\frac{d y}{d x}\right|_{(0,2)}=0-1=-1=m \quad \mathcal{L}(x)=2-x \\
h(1) \approx \mathcal{L}(1)=2-1=1
\end{array}
$$

