Name \qquad Date \qquad Period \qquad

Worksheet 6.6-Improper Integrals

Show all work. No calculator unless explicitly stated.

Short Answer

1. Classify each of the integrals as proper or improper integrals. Give a clear reason for each.
(a) $\int_{5}^{\infty} \frac{d x}{(x-2)^{2}}$
(b) $\int_{1}^{5} \frac{d x}{(x-2)^{2}}$
(c) $\int_{2}^{5} \frac{d x}{(x-2)^{2}}$
(d) $\int_{3}^{5} \frac{d x}{(x-2)^{2}}$ Improper.
∞ as upper limit
of integration
improper.
$\operatorname{VA} \in x=2 \in[1,5]$,
the interval of integration.

Improper:
VAex=2, the Proper.
lower limit of
integration
Proper.

VA e $x=2 \notin[3,5]$,
outside the interval of integration.
2. Answer the following.
(a) If $\int_{a}^{\infty} f(x) d x=K$ and $0<g(x) \leq f(x)$, what can we say about $\int_{a}^{\infty} g(x) d x$?

Since integral of $f(x)$ converges,
by Comparison, anything smaller
than it, over the same interval, will converge too. Since $g(x) \leq f(x)$, $\int_{a}^{\infty} g(x) d x$ converges (but not necessarily to K).
(b) If $\int_{a}^{\infty} f(x) d x=K$ and $0<f(x)<g(x)$, what can we say about $\int_{a}^{\infty} g(x) d x$?

If the integral of $f(x)$ converges to K, we cannot
say anything for sure about an integral over the same interval
of a larger function. Since $g(x)>f(x), \int_{a}^{\infty} g(x) d x$ May
either converge or diverge.
(c) If $\int_{a}^{\infty} f(x) d x$ diverges and $0<f(x) \leq g(x)$, what can we say about $\int_{a}^{\infty} g(x) d x$?

$$
\begin{aligned}
& \text { If the integral of } f(x) \text { diverges, then any integral } \\
& \text { over the same interval of a Larger function will } \\
& \text { diverge as well. }
\end{aligned}
$$

(d) If $\int_{a}^{\infty} f(x) d x$ diverges and $0<g(x)<f(x)$, what can we say about $\int_{a}^{\infty} g(x) d x$?
if the integral of the larger function diverges, then the integral of the smaller function on the same interval may diverge OR converge, so we cannot say anything conclusively.
3. If $\int_{1}^{\infty} \frac{1}{x^{p}} d x$ converges for $p>1$, what can be said in general about improper integrals of the form $\int_{a}^{\infty} \frac{1}{x^{p}} d x$? For what values of a does the function diverge? Converge? To what?
$\int_{1}^{\infty} \frac{1}{x^{p}} d x$, for $p>1$, converges to $\frac{1}{p-1}$. For $\int_{a}^{\infty} \frac{1}{x^{p}}, p>1$, still converges for $p>1, a>0$, but not necessarily to $\frac{1}{p-1}$, we still call these integrals ($\int_{a}^{\infty} \frac{1}{x^{p}} d x, a>0$) p-series integrals. if $p \leq 1$, the integral diverges, as the graph of $y=\frac{1}{x^{p}}$ does NOT go toward the x-axis (horizontal asymptote) fast enough (steep enough) to cause the integral to converge to a finite value.
4. Determine if the improper integral converges or diverges by finding a function to compare it to. Justify by showing the inequality and discussing the convergence/divergence of the function to which you compare.
(a) $\int_{2}^{\infty} \frac{x^{5}}{x^{6}-1} d x$
(b) $\int_{2}^{\infty} \frac{x^{3}+1}{\left(x^{4}+4 x+1\right)^{2}} d x$
$* \lim _{x \rightarrow \infty} \frac{x^{3}+1}{\left(x^{4}+4 x+1\right)^{2}}=0($ MAC $y=0)$
$\frac{x^{3}}{\left(x^{4}+4 x+1\right)^{2}} \sim \frac{x^{3}}{x^{8}} \sim \frac{1}{x^{5}}$
which converges, so we need a
bigger function that $y=\frac{1}{x^{5}}$
$\frac{x^{3}+1}{x^{8}+\cdots} \leq \frac{1}{x^{5}}, \forall x \geqslant 2$
$\int_{2}^{\infty} \frac{1}{x^{5}} d x$ is a convergent p-series
with $p=5>1$,
Sol $\int_{2}^{\infty} \frac{x^{3}+1}{\left(x^{4}+4 x+1\right)^{2}} d x$ converges as well!

Multiple Choice

(c) $\int_{1}^{\infty} \frac{d x}{(x+5)^{5}} \quad$ (d) $\int_{4}^{\infty} \frac{3+\sin x}{x} d x$
$* \lim _{x \rightarrow \infty} \frac{1}{(x+5)^{5}}=0 \quad$ (H ACy=0)
$* \lim _{x \rightarrow \infty} \frac{3+\sin x}{x}=0($ fAC $y=0)$
$\frac{3+\sin x}{x} \sim \frac{1}{x}$ which Diverges so we need a smaller function

$$
\frac{1}{x} \leq \frac{3+\sin x}{x}, \forall x \geqslant 4
$$

(Range of $3+\sin x$ is $[2,4]>1$)
So, $\int_{4}^{\infty} \frac{1}{x} d x$ is a divergent p-series with $p=1 \leq 1$.
So, $\int_{4}^{\infty} \frac{3+\sin x}{x} d x$ diverges to boot!
5. $\int_{0}^{\infty} x^{2} e^{-x^{3}} d x=$
(A) $-\frac{1}{3}$
(B) 0
(C) $\frac{1}{3}$
(D) 1
(E) Diverges

6. Which of the following gives the value of the integral $\int_{1}^{\infty} \frac{d x}{x^{1.01}}$?
(A) 1
(B) 10
(C) 100
(D) 1000
(E) Diverges
Convergent p-series $(p=1.01>1)$
Starting at $x=1$,
So, $\int_{1}^{\infty} \frac{1}{x^{1.01}} d x=\frac{1}{1.01-1}$
$=\frac{1}{\frac{1}{100}}$
$=100$
B
7. Which of the following gives the value of the integral $\int_{0}^{1} \frac{d x}{x^{0.5}}$?

$$
\begin{aligned}
& \quad \begin{array}{l}
\text { (A) } 1 \\
\int_{0}^{1} \frac{1}{x^{1 / 2}} d x \text { for } f(x)=\frac{1}{\sqrt{x}}, x \neq 0, \\
\lim _{b \rightarrow 0^{+}} \int_{b}^{1} x^{-1 / 2} d x \\
\lim _{b \rightarrow 0^{+}}+\left.2 x^{1 / 2}\right|_{b} ^{1} \\
\lim _{b \rightarrow 0^{+}}+2[1-\sqrt{b}] \\
2[1-0] \\
2
\end{array}
\end{aligned}
$$

E 8. Which of the following gives the value of the integral $\int_{0}^{1} \frac{d x}{x-1}$?
(B) $-1 / 2$
(C) 0
(D) 1
(E) Diverges
Method 1:

$$
\begin{aligned}
& \text { l: } \int_{0}^{(A)} \frac{1}{x-1} d x, \\
& \lim _{b \rightarrow 1^{-}} \int_{0}^{b} \frac{1}{x-1} d x \\
& \lim _{b \rightarrow 1^{-}}-\left.\ln |x-1|\right|_{0} ^{b} \\
& \operatorname{lil}_{b \rightarrow 1^{-}}-[\ln |b-1|-\ln |-1|] \\
& -\infty|b-1|-0] \\
& -\infty
\end{aligned}
$$

(B) $-1 / 2$

$$
\begin{array}{cc}
\text { (A) } & -1 \\
\cap 1
\end{array}
$$

Page 3 of 7
Diverges
9. Which of the following gives the value of the area under the curve $y=\frac{1}{x^{2}+1}$ in the first quadrant?
(A) $\frac{\pi}{4}$
(B) 1
(C) $\frac{\pi}{2}$
(D) π
(E) Diverges

$$
\begin{gathered}
\text { Area }=\int_{0}^{\infty}\left(\frac{1}{x^{2}+1}-0\right) d x \\
\left.\sum_{b \rightarrow \infty}^{\lim _{b \rightarrow \infty}} \arctan x\right|_{0} ^{b}[\arctan b-\arctan 0] \\
\frac{\pi}{2}-0 \\
\frac{\pi}{2}
\end{gathered}
$$

10. Determine if $\int_{0}^{2} f(x) d x$ is convergent or divergent when $f(x)=\left\{\begin{array}{ll}x^{-1 / 2}, & x \leq 1 \\ x, & 1<x \leq 2\end{array}\right.$, and if it is convergent, find its value.
(A) $1 / 2$
(B) $5 / 2$
(C) $7 / 2$
(D) 4
(E) Diverges
for $x \leq 1, f(x)=\frac{1}{\sqrt{x}}$ so $x>0 \& x \leq 1$
$f(x)$ has a $\vee A \subset x=0$
$\int_{0}^{2} f(x) d x \quad$ for $x=1, f(x)$ has a VA ex =0
11. $\int_{2}^{\infty} \frac{x}{\sqrt[3]{x^{2}-2}} d x=$
(A) $\frac{3 \cdot 2^{2 / 3}}{4}$
(B) $2^{2 / 3}$
(C) $-\frac{3 \cdot 2^{2 / 3}}{4}$
(D) $-\frac{3 \cdot 2^{2 / 3}}{2}$
(E) Diverges
$\frac{x}{\sqrt[3]{x^{2-2}}} \sim \frac{x}{x^{2 / 3}} \sim x^{1 / 3}=\frac{1}{x^{-1 / 3}}$
so $\int_{2}^{\infty} \frac{1}{x^{-1 / 3} d x}$ is a divergent
p-series with $p=-\frac{1}{3} \leq 1$

Free Response

Hamm... [strokes chin]
OK, done! I accept it!
12. (AP 1996-1) Consider the graph of the function h given by $h(x)=e^{-x^{2}}$ for $0 \leq x<\infty$.

(a) Let R be the unbounded region in the first quadrant below the graph of h. Find the volume of the solid generated when R is revolved about the y-axis.

$$
\begin{aligned}
& \text { ParaSHELL } \\
& V=2 \pi \int_{0}^{\infty}(X)\left(e^{r x^{2}}-0\right) d x \\
& V=2 \pi \int_{0}^{\infty} x \cdot e^{-x^{2}} d x \\
& V=\left.e_{b \rightarrow \infty}(2 \pi)\left(-\frac{1}{2}\right) e^{-x^{2}}\right|_{0} ^{b} \\
& V=e_{b \rightarrow \infty}-\pi\left[e^{-b^{2}}-1\right] \\
& V=-\pi[0-1] \\
& V=\pi
\end{aligned}
$$

(b) Let $A(w)$ be the area of the shaded rectangle shown in the figure. Show that $A(w)$ has its maximum value when w is the x-coordinate of the point of inflection of the graph of h.

$$
\begin{aligned}
& \text { Area of rectangle }=A(w)=w \cdot e^{-w^{2}} \mid \text { since } A^{\prime}(w)>0 \quad \forall w \in\left[0, \sqrt{\frac{1}{2}}\right) \\
& A^{\prime}(w)=1 \cdot e^{-w^{2}}+w\left(-2 w e^{-w^{2}}\right)=0 \\
& \begin{array}{l}
e^{-w^{2}}=0 \text { or } \begin{aligned}
1-2 w^{2} & =0 \\
\text { No Solution } & 2 w^{2}
\end{aligned}=1
\end{array}
\end{aligned}
$$

$$
\begin{aligned}
& \text { * Note: } \sqrt{\frac{1}{2}}=\frac{1}{\sqrt{2}}=\frac{\sqrt{2}}{2} \\
& \text { \& } A^{\prime}(w)<0 \quad \forall W>\sqrt{\frac{1}{2}} \text {, } \\
& W=\sqrt{\frac{1}{2}} \text { maximizes } A(w) \\
& \begin{array}{l}
\text { absolutely on } w \in[0, \infty) \\
h(x)=e^{-x^{2}} \\
h^{\prime}(x)=-2 x e^{-x^{2}} \\
h^{\prime \prime}(x)=-2 e^{-x^{2}}-2 x\left(-2 x e^{-x^{2}}\right)
\end{array}\left\{\begin{array}{c}
e^{-x^{2}}=0 \quad 1-2 x^{2}=0 \\
\text { Nosoln } x=\sqrt{\frac{1}{2}} \\
x \left\lvert\, \sqrt{\frac{1}{4}} \sqrt{\frac{1}{2}} 1\right. \\
h^{\prime \prime}|\sqrt{-}|+ \\
\text { So, h hasa inflection }
\end{array}\right. \\
& h^{\prime \prime}(x)=-2 e^{-x^{2}}+4 x^{2} e^{-x^{2}}=0 \\
& -2 e^{-x^{2}}\left(1-2 x^{2}\right)=0 \\
& \text { So, } h \text { has an inflection } p t \text {. } \\
& \begin{array}{l}
\text { at } x=\sqrt{\frac{1}{2}} \text { which is the } \\
\text { value that maximizes } A(w) \text {. }
\end{array}
\end{aligned}
$$

13. (AP 2001-5) Let f be the function satisfying $f^{\prime}(x)=-3 x f(x)$, for all real numbers x, with $f(1)=4$ and $\lim _{x \rightarrow \infty} f(x)=0$.
$x \rightarrow \infty$

(a) Evaluate $\int_{1}^{\infty}-3 x f(x) d x$. Show the work that leads to your answer.

$$
\begin{aligned}
& \lim _{x \rightarrow \infty}^{1} \int_{1}^{b}-3 x f(x) d x \\
& \lim _{x \rightarrow \infty} \int_{1}^{b} f^{\prime}(x) d x \\
& \left.\lim _{x \rightarrow \infty} f(x)\right|_{1} ^{b} \sqrt{1} \\
& \lim _{x \rightarrow \infty}(f(b)-f(1)) \\
& 0-4 \\
& -4(\sqrt{2})
\end{aligned}
$$

(b) Use Euler's method, starting at $x=1$ with a step size of 0.5 , to approximate $\underline{f(2)}$.

$$
\begin{aligned}
& \Delta x=0.5=\frac{1}{2}
\end{aligned}
$$

(c) Write an expression for $y=f(x)$ by solving the differential equation $\frac{d y}{d x}=-3 x y$ with the intial condition $f(1)=4$.

$$
\begin{aligned}
& \left.\begin{array}{ll}
\frac{d y}{d x}=-3 x y \\
\frac{1}{y} d y & =-3 x d x(\sqrt{5})
\end{array} \quad \begin{array}{rl}
\text { for } f(1)=4: & 4
\end{array}=C e^{-\frac{3}{2}} \sqrt{8}\right) \\
& \int \frac{1}{y} d y=-3 \int x d x
\end{aligned}
$$

$$
\begin{aligned}
& y=C e^{-\frac{3}{2} x^{2}}
\end{aligned}
$$

14. (AP 2010B-5) Let f and g be the functions defined by $f(x)=\frac{1}{x}$ and $g(x)=\frac{4 x}{1+4 x^{2}}$, for all $x>0$.
y-value
(a) Find the absolute maximum value of g on the open interval $(0, \infty)$ if the maximum exists. Find the absolute minimum value of g on the open interval $(0, \infty)$ if the minimum exists. Justify your answers. y-value

$$
\begin{aligned}
& g(x)=\frac{4 x}{1+4 x^{2}} \\
& g^{\prime}(x)=\frac{\left(1+4 x^{2}\right)(4)-(4 x)(8 x)}{\left(1+4 x^{2}\right)^{2}} \\
& g^{\prime}(x)=\frac{4\left(1+4 x^{2}-8 x^{2}\right)}{\left(1+4 x^{2}\right)^{2}} \\
& g^{\prime}(x)=\frac{4\left(1-4 x^{2}\right)}{\left(1+4 x^{2}\right)^{2}} \\
& g^{\prime}(x)=0 \\
& \text { Never when 4(1-4x} \left.x^{2}\right)=0 \\
& x^{2}=\frac{1}{4} \\
& x=\sqrt{\frac{1}{4}} \\
& x=\frac{1}{2}
\end{aligned}
$$

$$
\begin{aligned}
& g(x)=\frac{1}{1+4 x^{2}} \\
& g^{\prime}(x)=\left(1+4 x^{2}\right)(4)-(4 x)(8 x)
\end{aligned}\left\{\begin{array}{l}
2 \sqrt{2} \\
g^{\prime} \| \\
\text { since } g^{\prime}>0
\end{array} \quad \forall x \in\left(0, \frac{1}{2}\right)\right.
$$

since $g^{\prime}>0 \quad \forall x \in\left(0, \frac{1}{2}\right)$
and $g^{\prime}<0 \forall x>\frac{1}{2}, g$ has $\sqrt{ } 4$
an abs. max at $x=\frac{1}{2}$. This
max value is $\left.g\left(\frac{1}{2}\right)=\frac{4\left(\frac{1}{2}\right)}{1+4\left(\frac{1}{2}\right)^{2}}=\frac{2}{1+1}=1 \sqrt{5}\right)$
g has no minimum valves
on $x \in(0, \infty)$
(b) Find the area of the unbounded region in the first quadrant to the right of the vertical line $x=1$, below the graph of f, and above the graph of g.

$$
\begin{aligned}
& \text { Area }=\int_{1}^{\infty}(f(x)-g(x)) d x \\
&=\sum_{b \rightarrow \infty} \int_{1}^{b}(f(x)-g(x)) d x \\
&=\sum_{b \rightarrow \infty} \int_{1}^{b}\left(\frac{1}{x}-\frac{4 x}{1+4 x^{2}}\right) d x \\
&=\left.\operatorname{lin}_{b \rightarrow \infty}\left[\left.\ln |x|-(4)\left(\frac{1}{8}\right) \ln \right\rvert\, 1+4 x^{2}\right]\right|_{1} ^{b} \\
&=\lim _{b \rightarrow \infty}\left[\left(\ln b-\frac{1}{2} \ln \left(1+4 b^{2}\right)\right)^{2}-\left(\ln 1-\frac{1}{2} \ln 5\right)\right] \\
&=\lim _{b \rightarrow \infty}\left[\ln \left(\frac{b}{\sqrt{1+4 b^{2}}}\right)+\frac{1}{2} \ln 5\right] \\
&=\lim _{b \rightarrow \infty}\left[\ln \left(\frac{\sqrt{b^{2}}}{\sqrt{1+4 b^{2}}}\right)+\frac{1}{2} \ln 5\right] \\
&=e_{b \rightarrow \infty}\left[\ln \left(\frac{b^{2}}{1+4 b^{2}}\right)^{1 / 2}+\frac{1}{2} \ln 5\right] \\
&= e_{b \rightarrow \infty}\left[\frac{1}{2} \ln \left(\frac{1 b^{2}}{4 b^{2}+1}\right)+\frac{1}{2} \ln 5\right] \\
&=\frac{1}{2} \ln \left(\frac{1}{4}\right)+\frac{1}{2} \ln 5(\sqrt{9}) \\
& \frac{1}{2}\left[\ln \left(\frac{1}{4}\right)+\ln 5\right] \\
& \frac{1}{2} \ln \left(\frac{5}{4}\right)
\end{aligned}
$$

