Name \qquad Date \qquad Period \qquad

Worksheet 7.1—Intro to Parametric \& Vector Calculus

Show all work. No calculator unless explicitly stated.

Short Answer

1. If $x=t^{2}-1$ and $y=e^{t^{3}}$, find $\frac{d y}{d x}$.

$$
\begin{aligned}
\frac{d y}{d x} & =\frac{y^{\prime}(t)}{x^{\prime}(t)} \\
& =\frac{3 t^{2} e^{t^{3}}}{2 t}
\end{aligned}
$$

2. If a particle moves in the $x y$ - plane so that at any time $\underline{t>0}$, its position vector is $\underset{\vec{s}}{=}\left\langle\ln \left(t^{2}+5 t\right), 3 t^{2}\right\rangle$, find its velocity vector at time $t=2$.

$$
\begin{aligned}
\vec{V}=\vec{s}^{\prime} & =\left\langle\frac{2 t+5}{t^{2}+5 t}, 6 t\right\rangle \\
\vec{V}(2) & =\left\langle\frac{4+5}{4+10}, 12\right\rangle \\
& =\left\langle\frac{9}{14}, 12\right\rangle
\end{aligned}
$$

3. A particle moves in the $x y$ - plane so that at any time t, its coordinates are given by $x=t^{5}-1$,

$$
y=3 t^{4}-2 t^{3} . \text { Find its acceleration vector at } t=1
$$

$$
\vec{s}(t)=\left\langle t^{5}-1,3 t^{4}-2 t^{3}\right\rangle
$$

$$
\vec{s}^{\prime}(t)=\vec{v}(t)=\left\langle 5 t^{4}, 12 t^{3}-6 t^{2}\right\rangle
$$

$$
\vec{s}^{\prime \prime}(t)=\vec{v}^{\prime}(t)=\vec{a}(t)=\left\langle 20 t^{3}, 36 t^{2}-12 t\right\rangle
$$

$$
\begin{aligned}
\vec{a}(1) & =\langle 20,36-12\rangle \\
& =\langle 20,24\rangle
\end{aligned}
$$

4. If a particle moves in the $x y$-plane so that at time t, its position vector is $\left\langle\sin \left(3 t-\frac{\pi}{2}\right), 3 t^{2}\right\rangle$, find the velocity vector at time $t=\frac{\pi}{2}$.

$$
\begin{aligned}
& \vec{S}=1 \\
& \vec{S}^{\prime}=\vec{v}=\left\langle 3 \cos \left(3 t-\frac{\pi}{2}\right), 6 t\right\rangle \\
& \vec{V}\left(\frac{\pi}{2}\right)=\langle 3 \cos (\pi), 3 \pi\rangle \\
&=\langle-3,3 \pi\rangle
\end{aligned}
$$

5. A particle moves on the curve $y=\ln x$ so that its x-component has velocity $x^{\prime}(t)=t+1$ for $t \geq 0$. At time $t=0$, the particle is at the point $(1,0)$. Find the position of the particle at time $t=1$.

$$
\begin{aligned}
x(1) & =x(0)+\int_{0}^{1} x^{\prime}(t) d t \\
& =1+\int_{0}^{1}(t+1) d t \\
& =1+\left.\left[\frac{1}{2} t^{2}+t\right]\right|_{0} ^{1} \\
& =1+\left[\left(\frac{1}{2}+1\right)-(0)\right] \\
x(1) & =\frac{5}{2}
\end{aligned} \quad \begin{aligned}
& \text { so, when } x=\frac{5}{2}, \\
& y\left(\frac{5}{2}\right)=\ln \frac{5}{2}, \\
& \text { so, at } t=1, \text { the particle } \\
& \text { is at }(x, y)=\left(\frac{5}{2}, \ln \frac{5}{2}\right) .
\end{aligned}
$$

6. A particle moves in the $x y$-plane in such a way that its velocity vector is $\left\langle 1+t, t^{3}\right\rangle$. If the position vector at $t=0$ is $\langle 5,0\rangle$, find the position of the particle at $t=2$.

$$
\begin{aligned}
x^{\prime}(t) & =1+t \\
x(2) & =x(0)+\int_{0}^{2} x^{\prime}(t) d t \\
& =5+\int_{0}^{2}(1+t) d t \\
& =5+\left.\left[t+\frac{1}{2} t^{2}\right]\right|_{0} ^{2} \\
& =5+[(2+2)-(0)] \quad \begin{array}{l}
y^{\prime}(t)
\end{array}=t^{3} \\
y(2) & =y(0)+\int_{0}^{2} y^{\prime}(t) d t \\
& =0+\int_{0}^{2}\left(t^{3}\right) d t \\
& =\left.\frac{1}{4} t^{4}\right|_{0} ^{2} \\
& =\frac{1}{4}[16-0] \\
& =9+4 \\
& =4
\end{aligned}
$$

7. A particle moves along the curve $x y=10$. If $x=2$ and $\frac{d y}{d t}=3$, what is the value of $\frac{d x}{d t}$?

$$
\begin{aligned}
y & =\frac{10}{x} \\
\frac{d y}{d x} & =\frac{-10}{x^{2}}=\frac{d y / d t}{d x / d t} \\
\text { When } x=2: \frac{-10}{\left(2^{2}\right)} & =\frac{3}{d x / d t} \\
\frac{\frac{d x}{d t}}{3} & =\frac{4}{-10} \\
\frac{d x}{d t} & =\left(-\frac{2}{5}\right)(3) \\
\frac{d x}{d t} & =-\frac{6}{5}
\end{aligned}
$$

8. The position of a particle moving in the $x y$ - plane is given by the parametric equations

$$
\begin{array}{cc}
\begin{array}{l}
x=t^{3}-\frac{3}{2} t^{2}-18 t+5 \\
\text { and } y=t^{3}-6 t^{2}+9 t+4 .
\end{array} \\
\begin{array}{cc}
x^{\prime}(t)=3 t^{2}-3 t-18=0 & y^{\prime}(t)=3 t^{2}-12 t+9=0 \\
3\left(t^{2}-t-6\right)=0 & 3\left(t^{2}-4 t+3\right)=0 \\
3(t-3)(t+2)=0 & 3(t-3)(t-1)=0 \\
t=3, t=-2 & \\
t=3, t=1 \\
\text { So, particle is at rest values) of } t \text { is the particle at rest? } \\
\text { for } t=3 .
\end{array}
\end{array}
$$

9. A curve C is defined by the parametric equations $x=t^{3}$ and $y=t^{2}-5 t+2$. Write an equation of the line tangent to the graph of C at the point $\underline{(8,-4) .} x^{\prime}(t)=3 t^{2} \quad y^{\prime}(t)=2 t-5$
Find t : when $x=8$

$$
\begin{aligned}
& t^{3}=8 \\
& t=2
\end{aligned}
$$

$$
\begin{aligned}
& \text { So } \frac{d y}{d x}=\frac{y^{\prime}(t)}{x^{\prime}(t)}=\frac{2 t-5}{3 t^{2}} \\
& \left.\frac{d y}{d x}\right|_{t=2}=\frac{-1}{12} \\
& \text { so, } L=-4-\frac{1}{12}(x-8)
\end{aligned}
$$

10. (Calculator Permitted) A particle moves in the $x y$ - plane so that the position of the particle is given by $x(t)=5 t+3 \sin t$ and $y(t)=(8-t)(1-\cos t)$. Find the velocity vector at the time when the particle's horizontal position is $x=25$.

$$
\begin{aligned}
& x(t)=25 \\
& 5 t+3 \sin t=25 \\
& 5 t+3 \sin t-25=0 \\
& t=5.445 \ldots=A \text { (stor es } A)
\end{aligned}
$$

$$
\text { so, } \begin{aligned}
\vec{V}(A)= & \left\langle x^{\prime}(A), y^{\prime}(A)\right\rangle \\
= & \langle 7.008,-2.228\rangle \\
& * \text { Remember, numeric derivatives } \\
& \text { are MATH1 \#8 on calculator. }
\end{aligned}
$$

Free Response: (Still)

11. The position of a particle at any time $t \geq 0$ given by $x(t)=t^{2}-3$ and $y(t)=\frac{2}{3} t^{3}$.
(a) Find the magnitude of the velocity vector at time $t=5$.

$$
\begin{aligned}
& x^{\prime}(t)=2 t, y^{\prime}(t)=2 t^{2} \\
& \vec{V}=\left\langle 2 t, 2 t^{2}\right\rangle \\
& \vec{v}(5)=\langle 10,50\rangle \\
& \|\vec{V}(\mathrm{~s})\|=\sqrt{10^{2}+50^{2}} \\
& =\sqrt{2600} \\
& =10 \sqrt{26}
\end{aligned}
$$

(b) Find the total distance traveled by the particle from $t=0$ to $t=5$.

$$
\begin{aligned}
\mathcal{L}=\text { Dist } & =\int_{0}^{5} \sqrt{(2 t)^{2}+\left(2 t^{2}\right)^{2}} d t \mid \\
& =\int_{0}^{5} \sqrt{4 t^{2}\left(1+t^{2}\right)} d t \\
& =2 \int_{0}^{5} t\left(1+t^{2}\right)^{1 / 2} d t \\
& =\left.2\left(\frac{1}{2}\right)\left(\frac{2}{3}\right)\left(1+t^{2}\right)^{3 / 2}\right|_{0} ^{5} \\
& =\frac{2}{3}\left[26^{3 / 2}-1^{3 / 2}\right.
\end{aligned}
$$

(c) Find $\frac{d y}{d x} \frac{\text { as a function of } x \text {. }}{\left(\text { not } t^{\prime} .\right)}$

Eliminate the parameter lIst.

$$
\begin{aligned}
& \begin{array}{c}
x=t^{2}-3, y=\frac{2}{3} t^{3} \\
x+3=t^{2}
\end{array} \\
& t \geqslant 0: t=+\sqrt{x+3} \\
& y=\frac{2}{3}(x+3)^{3 / 2} \\
& \begin{aligned}
\frac{d y}{d x} & =(x+3)^{1 / 2} \\
& =\sqrt{x+3}
\end{aligned}
\end{aligned}
$$

12. Point $P(x, y)$ moves in the $x y$-plane in such away that $\frac{d x}{d t}=\frac{1}{t+1}$ and $\frac{d y}{d t}=2 t$ for $t \geq 0$.
(a) Find the coordinates of P in terms of t when $t=1, x=\ln 2$, and $y=0$.

$$
\begin{aligned}
& x(t)= \int \frac{1}{t+1} d t \\
&= \ln |t+1|+C \\
& \text { when } \\
& t=1, x=\ln 2: \ln z=\ln 2+c \\
& c=0 \\
&=t^{2}+c \\
& \text { So, } x(t)=\ln |t+1| \\
& \text { when } t=1: 0=1^{2}+c \\
& y=0 \quad c=-1 \\
& \text { so, } y(t)=t^{2}-1 \\
& \text { so } P=(x, y)=\left(\ln |t+1|, t^{2}-1\right)
\end{aligned}
$$

(b) Write an equation expressing y in terms of x.
$t \geq 0$ eliminate the parameter

$$
\left.\begin{array}{l}
x=\ln |t+1|, \quad y=t^{2}-1 \\
e^{x}=|t+1| \\
e^{x}=t+1, t \geq 0 \\
t=e^{x}-1
\end{array}\right\} \begin{array}{r}
\text { so } y=(\quad)^{2}-1 \\
y=\left(e^{x}-1\right)^{2}-1
\end{array}
$$

(c) Find the average rate of change of y with respect to x as t varies from 0 to 4 .

$$
\begin{aligned}
A_{\text {Rv ac }} & =\frac{y(4)-y(0)}{4-0} \\
& =\frac{\left(4^{2}-1\right)-\left(0^{2}-1\right)}{\ln (4+1)-\ln (0+1)} \\
& =\frac{16}{\ln 5}
\end{aligned}
$$

(d) Find the instantaneous rate of change of y with respect to x when $t=1$.

$$
\begin{aligned}
& \frac{d y}{d x}=\frac{y^{\prime}(t)}{x^{\prime}(t)} \\
&=\frac{2 t}{\frac{1}{t+1}} \\
&=2 t(t+1) \\
&\left.\frac{d y}{d x}\right|_{t=1}=2(2)
\end{aligned}
$$

13. Consider the curve C given by the parametric equations $x=2-3 \cos t$ and $y=3+2 \sin t$, for $-\frac{\pi}{2} \leq t \leq \frac{\pi}{2}$.
$x^{\prime}(t)=3 \sin t \quad y^{\prime}(t)=2 \cos t$
(a) Find $\frac{d y}{d x}$ as a function of t.

$$
\begin{aligned}
\frac{d y}{d x} & =\frac{y^{\prime}(t)}{x^{\prime}(t)} \\
& =\frac{2 \cos t}{3 \sin t} \\
& =\frac{2}{3} \cot t
\end{aligned}
$$

(b) Find an equation of the tangent line at the point where $t=\frac{\pi}{4}$.

$$
\text { pt: } \begin{aligned}
&\left(x\left(\frac{\pi}{4}\right), y\left(\frac{\pi}{4}\right)\right)=\left(2-3 \cos \frac{\pi}{4}, 3+2 \sin \frac{\pi}{4}\right) \\
&=\left(2-\frac{3 \sqrt{2}}{2}, 3+\sqrt{2}\right) \\
& m:\left.\frac{d y}{d x}\right|_{\frac{\pi}{4}}=\frac{2}{3} \cot \frac{\pi}{4} \\
&=\frac{2}{3} \\
& \text { so, } L(x)=(3+\sqrt{2})+\frac{2}{3}\left(x-\left(2-\frac{3 \sqrt{2}}{2}\right)\right)
\end{aligned}
$$

(c) (Calculator Permitted) The curve C intersects the y-axis twice. Approximate the length of the curve between the two y-intercepts.

$$
\begin{aligned}
& x(t)=0 \\
& 2-3 \cos t=0 \\
& t=-0.841 \ldots=A \\
& t=0.841 \ldots=B \\
& \mathcal{L}=\int_{A}^{B} \sqrt{(3 \sin t)^{2}+(2 \cos t)^{2}} d t \\
& =3.756 \text { or } 3.757
\end{aligned}
$$

Multiple Choice:

14. A parametric curve is defined by $x=\sin t$ and $y=\csc t$ for $0<t<\frac{\pi}{2}$. This curve is
(A) increasing \& concave up
(B) increasing \& concave down
(C) decreasing \& concave up (D) decreasing \& concave down
(E) decreasing with a point of inflection
$x^{\prime}=\cos t, y^{\prime}=-\csc t \cot t$
$\left.\frac{d y}{d x}=\frac{-\csc t \cot t}{\cos t} \quad \right\rvert\, \frac{d^{2} y}{d x^{2}}=\frac{\frac{d}{d t}\left[\frac{d y}{d x}\right]}{\frac{d x}{d t}}$
$\begin{aligned} & =-\frac{1}{\sin t} \cdot \frac{\cos t}{\sin t} \cdot \frac{1}{\cos t} \\ & =-(\sin t)^{-2}\end{aligned}=\frac{2(\sin t)(\cos t)}{2 \cos t}$
$=\frac{-1}{\sin ^{2} t} \quad=\frac{2}{\sin ^{3} t}$

for $t \in\left(0, \frac{\pi}{2}\right), \begin{array}{l}\frac{d y}{d x}<0\end{array}$	for $t \in\left(0, \frac{\pi}{2}\right), \frac{d^{2} y}{d x^{2}}>0$
	So, curve is concave up.

So curve is decreasing So, curve is concave up.
15. The parametric curve defined by $x=\ln t, y=t$ for $t>0$ is identical to the graph of the function

$$
\begin{aligned}
& \text { (A) } y=\ln x \text { for all real } x \quad \text { (B) } y=\ln x \text { for } x>0 \quad \text { (C) } y=e^{x} \text { for all real } x \\
& \begin{aligned}
\text { (D) } y=e^{x} \text { for } x>0 & \text { (E) } y=\ln \left(e^{x}\right) \text { for } x>0
\end{aligned} \\
& X=\ln t, y=t, t>0 \\
& \\
& \text { eliminate parameter } \\
& x=\ln y, y>0 \\
& \text { So, } \quad e^{x}=e^{\ln y}, y>0 \\
& y=e^{x}, y>0 \quad \forall x \in \mathbb{R}
\end{aligned}
$$

16. The position of a particle in the $x y$ - plane is given by $x=t^{2}+1$ and $y=\ln (2 t+3)$ for all $t \geq 0$. The acceleration vector of the particle is

$$
\begin{aligned}
& \begin{array}{ll}
\text { (A) }\left(2 t, \frac{2}{2 t+3}\right) \quad \text { (B) }\left(2 t,-\frac{4}{(2 t+3)^{2}}\right) \quad \text { (C) }\left(2, \frac{4}{(2 t+3)^{2}}\right)
\end{array} \\
& \text { (D) }\left(2, \frac{2}{(2 t+3)^{2}}\right) \quad \text { (E) }\left(2,-\frac{4}{(2 t+3)^{2}}\right) \\
& \vec{s}=\left\langle t^{2}+1, \ln (2 t+3)\right\rangle \\
& \vec{s}^{\prime}=\vec{v}=\left\langle 2 t, \frac{2}{2 t+3}\right\rangle=\left\langle 2 t, 2(2 t+3)^{-1}\right\rangle \\
& \vec{S}^{\prime \prime}=\vec{v}^{\prime}=\vec{a}=\left\langle 2,-2(2 t+3)^{-2}(2)\right\rangle \\
& =\left\langle 2, \frac{-4}{(2 t+3)^{2}}\right\rangle
\end{aligned}
$$

