Name \qquad Date \qquad Period \qquad

Worksheet 10.5-Surface Area

Show all work on a separate sheet of paper. Calculator on \#1 only.
Free Response \& Short Answer \quad Area $=2 \pi \int_{a}^{b} r(x) \sqrt{1+\left[f^{\prime}(x)\right]^{2}} d x$

1. (Calculator Permitted- Show your set up) Find the area of the surface obtained by rotating the curve $y=\sqrt{x}$ about the x-axis on the interval $4 \leq x \leq 16$.

$$
\begin{aligned}
\text { Area } & =2 \pi \int_{4}^{16} \sqrt{x} \sqrt{1+\left(\frac{1}{2 \sqrt{x}}\right)^{2}} d x \\
& =2 \pi \int_{4}^{10} \sqrt{x} \sqrt{1+\frac{1}{4 x}} d x \\
& =237.689
\end{aligned}
$$

Multiple Choice

2. (No Calculator- Show your work) The area of the surface of revolution formed by revolving the graph of $f(x)=x+1$ from $0 \leq x \leq 1$ about the x-axis is which of the following?
(A) $\frac{3 \sqrt{2}}{2} \pi$
(B) $3 \sqrt{2} \pi$
(C) $2 \sqrt{2} \pi$
(D) $3 \sqrt{5} \pi$
(E) $2 \sqrt{5} \pi$

$$
\begin{aligned}
\text { Area } & =2 \pi r \ell \\
& =2 \pi\left(\frac{3}{2}\right) \sqrt{2} \\
& =3 \sqrt{2} \pi
\end{aligned}
$$

