Name \qquad Date \qquad Period \qquad

WS P.3-Simplifying Expressions and Algebraic Gymnastics

Show all work on notebook paper. No Calculator

1. Find the exact value of each expression
(a) $\log _{10} 25+\log _{10} 4$
(b) $e^{4 \ln 2}$
2. Solve each of the following equations for x. Find the simplified, exact value.
(a) $e^{x}=3$
(b) $e^{e^{x}}=3$
(c) $\log _{3}(x+1)=2$
(d) $\log _{3} 27=x$

Multiple Choice

_3. Rationalize the numerator of $\frac{\sqrt{x+4}-\sqrt{x-2}}{x}$
(A) $\frac{2}{x(\sqrt{x+4}+\sqrt{x-2})}$
(B) $\frac{6}{x(\sqrt{x+4}-\sqrt{x-2})}$
(C) $\frac{6}{x(\sqrt{x+4}+\sqrt{x-2})}$
(D) $\frac{2 x}{\sqrt{x+4}+\sqrt{x-2}}$
(E) $\frac{6 x}{\sqrt{x+4}-\sqrt{x-2}}$
\qquad 4. Which, if any, of the following statements are true when a, b are real numbers?
I. For all positive a and $b, \sqrt{a+b}=\sqrt{a}+\sqrt{b}$.
II. For all a and $b, \sqrt{(a+b)^{2}}=|a+b|$.
III. For all positive a and $b, \frac{a-b}{\sqrt{a}+\sqrt{b}}=\sqrt{a}+\sqrt{b}$.
(A) III only
(B) all of them
(C) I and II only
(D) II only
(E) II and III only (F) none of them (G) I and III only (H) I only
-2. Simplify the expression $\frac{1+\frac{2}{x-3}}{5+40\left(\frac{x}{x^{2}-9}\right)}$
(A) $\frac{1}{5}\left(\frac{x+3}{2 x+9}\right)$
(B) $\frac{x+3}{x-9}$
(C) $\frac{1}{5}\left(\frac{x+3}{x+9}\right)$
(D) $\frac{x+3}{2 x-9}$
(E) $\frac{1}{5}\left(\frac{x-3}{x+9}\right)$
(F) $\frac{x-3}{x-9}$
\qquad 6. The shaded area in the figure is the complement of the sector of a circle of radius 6 inches lying inside the right triangle $\triangle A B C$ with the angle θ being expressed in radians. Express this shaded area as a function of S, of θ.

(A) $S(\theta)=36(\tan \theta-\theta)$
(B) $S(\theta)=36(\sin \theta-\theta)$
(C) $S(\theta)=18(\sin \theta-\theta)$
$\begin{array}{ll}\text { (D) } S(\theta)=18(\cos \theta-\theta) & \text { (E) } S(\theta)=18(\tan \theta-\theta)\end{array}$
\qquad 7. Which of the following statements are true?
I. \quad The circle $(x-1)^{2}+(y-2)^{2}=1$ has radius $=1$.
II. The circle $(x-5)^{2}+(y-6)^{2}=9$ has center $=(6,5)$.
III. The circle $(x-4)^{2}+(y-4)^{2}=25$ has y-intercepts $=1,7$.
(A) I only
(B) II only
(C) I and III only
(D) III only
(E) II and III only
(F) none of them (G) all of them (H) I and II only
\qquad 8. Find the area of the shaded region shown outside the square and inside the circle when the area of the circle is 25π sq. units.

(A) $5(4-\pi)$ sq. units
(B) $5(\pi-1)$ sq. units
(C) $25(\pi-2)$ sq. units
(D) $5(\pi-2)$ sq. units
(E) $25(\pi-1)$ sq. units
(F) $25(4-\pi)$ sq. units
-2. Simplify the difference quotient $\frac{f(x+h)-f(x)}{h},(h \neq 0)$, when $f(x)=2 x^{2}-4 x-4$.
(A) $4 x+4+2 h$
(B) $4 x-4+2 h$
(C) $2 x+4+2 h$
(D) $2 x-4+2 h$
(E) $4 x-4$
\qquad 10. Captain Calculus can leap over tall buildings. When he does so, his height s (in feet) off the ground after t seconds is given by $s(t)=-t^{2}+7 t+34$. For how many seconds is Captain Calculus more that 40 feet off the ground?
(A) 6 sec
(B) $\frac{9}{2} \mathrm{sec}$
(C) $\frac{11}{2} \mathrm{sec}$
(D) $\frac{5}{2} \mathrm{sec}$
(E) 5 sec
\qquad 11. If $f(x)=2 x-1$ and $g(x)=x+3$, which of the following gives $(f \circ g)(2)$?
(A) 2
(B) 6
(C) 7
(D) 9
(E) 10
12. Which of the following is a solution of the equation $2-3^{x}=-1$?
(A) $x=-2$
(B) $x=-1$
(C) $x=0$
(D) $x=1$
(E) No solution
\qquad 13. The length L of a rectangle is twice as long as its width W. Which of the following gives the area A of the rectangle as a function of its width?
(A) $A(W)=3 W$
(B) $A(W)=\frac{1}{2} W^{2}$
(C) $A(W)=2 W^{2}$
(D) $A(W)=W^{2}+2 W$
(E) $A(W)=W^{2}-2 W$
\qquad 14. If $p(x)=(x+2)(x+k)$ and if the remainder is 12 when $p(x)$ is divided by $x-1$, then $k=$
(A) 2
(B) 3
(C) 6
(D) 11
(E) 13
\qquad 15. The set of all points $\left(e^{t}, t\right)$, where t is a real number, is the graph of $y=$
(A) $\frac{1}{e^{x}}$
(B) $e^{1 / x}$
(C) $x e^{1 / x}$
(D) $\frac{1}{\ln x}$
(E) $\ln x$
-16. If $f(x)=\frac{4}{x-1}$ and $g(x)=2 x$, then the solutions of $f(g(x))=g(f(x))$ is
(A) $\left\{\frac{1}{3}\right\}$
(B) $\{2\}$
(C) $\{3\}$
(D) $\{-1,2\}$
(E) $\left\{\frac{1}{3}, 2\right\}$
17. If the function f is defined by $f(x)=x^{5}-1$, then f^{-1}, the inverse function of f, is defined by

$$
f^{-1}(x)=
$$

(A) $\frac{1}{\sqrt[5]{x}+1}$
(B) $\frac{1}{\sqrt[5]{x+1}}$
(C) $\sqrt[5]{x-1}$
(D) $\sqrt[5]{x}-1$
(E) $\sqrt[5]{x+1}$
18. If a, b, c, d, and e are real numbers and $a \neq 0$, then the polynomial equation $a x^{7}+b x^{5}+c x^{3}+d x+e=0$ has
(A) only one real root
(B) at least one real root
(C) an odd number of nonreal roots
(D) no real roots
(E) no positive real roots
19. What are all values of k for which the graph of $y=x^{3}-3 x^{2}+k$ will have three distinct x intercepts?
(A) All $k>0$
(B) All $k<4$
(C) $k=0,4$
(D) $0<k<4$
(E) All k
20. If $f(g(x))=x^{3}+3 x^{2}+4 x+5$ and $g(x)=5$, then $g(f(x))=$
(A) $5 x^{2}+15 x+25$
(B) $5 x^{3}+15 x^{2}+20 x+25$
(C) 1125
(D) 225
(E) 5
\qquad 21. If $f(x)=2 x^{3}+A x^{2}+B x-5$ and if $f(2)=3$ and $f(-2)=-37$, what is the value of $A+B$?
(A) -6
(B) -3
(C) -1
(D) 2
(E) It cannot be determined from the information given
22. Suppose that f is a function that is defined for all real numbers. Which of the following conditions assures that f has an inverse function?
(A) The function f is periodic \quad (B) The function f is symmetric with respect to the y-axis
(C) The function f is concave up (D) The function f is a strictly increasing function

The function f is continuous
23. If $\log _{a}\left(2^{a}\right)=\frac{a}{4}$, then $a=$
(A) 2
(B) 4
(C) 8
(D) 16
(E) 32
\qquad 24. If $f(g(x))=\ln \left(x^{2}+4\right), f(x)=\ln \left(x^{2}\right)$, and $g(x)>0$ for all real x, then $g(x)=$
(A) $\frac{1}{\sqrt{x^{2}+4}}$
(B) $\frac{1}{x^{2}+4}$
(C) $\sqrt{x^{2}+4}$
(D) $x^{2}+4$
(E) $x+2$
25. If $\ln x-\ln \left(\frac{1}{x}\right)=2$, then $x=$
(A) $\frac{1}{e^{2}}$
(B) $\frac{1}{e}$
(C) e
(D) $2 e$
(E) e^{2}
\qquad 26. If $f(x)=\frac{x}{x+1}$, then the inverse function, f^{-1}, is given by $f^{-1}(x)=$
(A) $\frac{x-1}{x}$
(B) $\frac{x+1}{x}$
(C) $\frac{x}{1-x}$
(D) $\frac{x}{x+1}$
(E) x
\qquad 27. If $f(x)=e^{x} \sin x$, then the number of zeros of f on the closed interval $[0,2 \pi]$ is
(A) 0
(B) 1
(C) 2
(D) 3
(E) 4
\qquad 28. If h is the function given by $h(x)=f(g(x))$, where $f(x)=3 x^{2}-1$ and $g(x)=|x|$, then $h(x)=$
(A) $3 x^{3}-|x|$
(B) $\left|3 x^{2}-1\right|$
(C) $3 x^{2}|x|-1$
(D) $3|x|-1$
(E) $3 x^{2}-1$
22. If $e^{g(x)}=\frac{x^{x}}{x^{2}-1}$, then $g(x)=$
(A) $x \ln x-2 x$
(B) $\frac{\ln x}{2}$
(C) $(x-2) \ln x$
(D) $\frac{x \ln x}{\ln \left(x^{2}-1\right)}$
(E) $x \ln x-\ln \left(x^{2}-1\right)$
_30. $\frac{\ln \left(x^{3} e^{x}\right)}{x}=$
(A) $\frac{3\left(\ln x+e^{x}\right)}{x}$
(B) $\ln \left(x^{3} e^{x}-x\right)$
(C) $\ln x^{2}+1$
(D) $\frac{3 \ln x+x}{x}$
(E) $\frac{3 \ln x}{x}$
31. If $f(g(x))=\sec \left(x^{3}+4\right), f(x)=\sec x^{3}$, and $g(x)$ is not an integer multiple of $\frac{\pi}{2}$, then $g(x)=$
(A) $\sqrt[3]{x+4}$
(B) $\sqrt[3]{x-4}$
(C) $\sqrt[3]{x^{3}+4}$
(D) $\sqrt[3]{x}-4$
(E) $\sqrt[3]{x}+4$
\qquad 32. If $f(x)=\log _{b} x$, then $f(b x)=$
(A) $b f(x)$
(B) $f(b) f(x)$
(C) $1+f(x)$
(D) $x f(b)$
(E) $f(x)$
33. Which of the following statements is true?
(A) $\log _{\frac{1}{2}} 2<\log _{\frac{1}{\sqrt{2}}} 2$
(B) $\log _{3}(2+4)=\log _{3} 2+\log _{3} 4$
(C) $\log 2>\log 4$
(D) $\log _{\frac{1}{5}}(5 \sqrt{5})=\frac{2}{3}$
(E) $\log _{\frac{1}{2}} 2-\log _{\frac{1}{2}} 4=\log _{\frac{1}{2}} 2$

