Name \qquad Date \qquad Period \qquad

Worksheet P.4-Equations of Lines

Show all work. No Calculator

1. Write an equation of the (a) vertical line and (b) horizontal line passing through the point $(-7, \pi)$.
2. Write an equation of the line in general form passing through the points $(-3,4)$ and $(5,-1)$. Remember to exclude and fractions in your final answer.
3. Write an equation of the line through the point $\left(4, \frac{1}{2}\right)$ that is (a) parallel to and
(b) perpendicular to the line $4 x-3 y=6$. Then (c) both the x - and y-intercepts of the line found in part (b).
4. Find the value of x for which line through $(-8,-3)$ and $(x, 4)$ has a slope of 3 .
5. Mr. Wenzel leaves school in his truck along Loop 337 at time $t=0$ traveling at 45 mph .
(a) Write an expression $d(t)$ for the distance Mr. Wenzel travels from school beginning at $t=0$ hours.
(b) Graph $y=d(t)$
(c) What is the slope of the graph in part (b)? What does it have to do with the truck?
(d) Create a scenario in which t could have negative values.
(e) Create a scenario in which the y-intercept of $y=d(t)$ could be 15 .
(f) Create a scenario in which there would NOT be an orange cone in the back of Mr. Wenzel's truck.
6. The tangent line to the graph of $f(x)=4 x^{2}$ at $x=-1$ has an equation $y=-8 x-4$.
(a) Find the coordinate $(x, f(x))$ of the point of tangency.
(b) Find the equation of the normal line at this point.
(c) Find the other coordinate where the normal line intersects the function f.
(d) The tangent line of f at $x=-1$ is used to approximate $f(-2)$. Find this approximation.
(e) Is your approximation from part (d) an over or and under approximation of the true value of $f(-2)$? Justify.

Multiple Choice

_ 7. Which of the following is an equation of the line through $(-3,4)$ with a slope of $\frac{1}{2}$?
(A) $y-4=\frac{1}{2}(x+3)$
(B) $y+3=\frac{1}{2}(x-4)$
(C) $y-4=-2(x+3)$
D) $y-4=2(x+3)$
(E) $y+3=2(x-4)$
\qquad 8. Which of the following is an equation of the vertical line through $(2,-4)$?
(A) $y=-4$
(B) $x=-2$
(C) $y=4$
(D) $x=0$
(E) $x=2$
\qquad 9. Which of the following is the x-intercept of the line $y=2 x-5$?
(A) $x=-5$
(B) $x=5$
(C) $x=0$
(D) $x=\frac{5}{2}$
(E) $x=-\frac{5}{2}$
\qquad 10. Which of the following is an equation of the line through $(-2,-1)$ parallel to the line $y=-3 x+1 ?$
(A) $y=-3 x+5$
(B) $y=-3 x-7$
(C) $y=\frac{1}{3} x-\frac{1}{3}$
(D) $y=-3 x+1$
(E) $y=-3 x-4$
\qquad 11. Find the x-intercept of the straight line passing through the point $(4,5)$ and parallel to $y+3 x=1$.
(A) $\frac{17}{4}$
(B) 6
(C) $\frac{17}{3}$
(D) $-\frac{7}{3}$
(E) $-\frac{17}{3}$
\qquad 12. Find the y-intercept of the straight line passing through the point $(5,3)$ and perpendicular to $y+2 x=1$.
(A) $-\frac{1}{2}$
(B) $\frac{11}{2}$
(C) $\frac{1}{2}$
(D) 0
(E) $-\frac{11}{2}$
\qquad 13. There is a linear relationship $T_{F}=m T_{C}+b$ between the temperature T_{F} on the Fahrenheit scale and its equivalent T_{C} on the Centigrade scale. As the thermometers show, water freezes at $32^{\circ} \mathrm{F}$ and boils at $212^{\circ} \mathrm{F}$, whereas it freezes at $0^{\circ} \mathrm{C}$ and boils at $100^{\circ} \mathrm{C}$. Convert $-5^{\circ} \mathrm{C}$ to its Fahrenheit equivalent.

(A) $\approx 23^{\circ} F$
(B) $\approx 24^{\circ} F$
$(\mathrm{C}) \approx 20^{\circ} \mathrm{F}$
(D) $\approx 22^{\circ} F$
$(\mathrm{E}) \approx 21^{\circ} \mathrm{F}$

