Name \qquad Date \qquad Period \qquad

Worksheet P.6-Fun with Functions

Show all work. No Calculator

I. Multiple Choice

\qquad 1. If $p(x)=(x+2)(x+k)$ and if the remainder is 12 when $p(x)$ is divided by $x-1$, then $k=$
(A) 2
(B) 3
(C) 6
(D) 11
(E) 13
\qquad 2. If $f(x)=\frac{4}{x-1}$ and $g(x)=2 x$, then the solution set of $f(g(x))=g(f(x))$ is
(A) $\left\{\frac{1}{3}\right\}$
(B) $\{2\}$
(C) $\{3\}$
(D) $\{-1,2\}$
(E) $\left\{\frac{1}{3}, 2\right\}$
\qquad 3. If the function f is defined by $f(x)=x^{5}-1$, then f^{-1}, the inverse function of f, is defined by $f^{-1}(x)=$
(A) $\frac{1}{\sqrt[5]{x}+1}$
(B) $\frac{1}{\sqrt[5]{x+1}}$
(C) $\sqrt[5]{x-1}$
(D) $\sqrt[5]{x}-1$
(E) $\sqrt[5]{x+1}$
__4. If a, b, c, d, and e are real numbers and $a \neq 0$, then the polynomial equation $a x^{7}+b x^{5}+c x^{3}+d x+e=0$ has
(A) only one real root
(B) at least one real root
(C) an odd number of nonreal roots (D) no real roots (E) no positive real roots
\qquad 5. If $f(x)=2 x^{3}+A x^{2}+B x-5$ and if $f(2)=3$ and $f(-2)=-37$, what is the value of $A+B$?
(A) -6
(B) -3
(C) -1
(D) 2
(E) cannot be determined from given info
6. Dividing the polynomial $f(x)=x^{3}+3 x^{2}-12$ by the polynomial $p(x)=x+1$ gives a remainder of what?
(A) 0
(B) -10
(C) 10
(D) -8
(E) none of these
\qquad 7. Find the inverse of the function $f(x)=\frac{3 x+2}{x}$, where $x \neq 0 . f^{-1}(x)=$
(A) $\frac{1}{3 x}$
(B) $\frac{x}{2 x-3}$
(C) $\frac{x}{2 x+3}$
(D) $\frac{2}{x-3}$
(E) none of these

II. Free Response

8. Divide $f(x)=x^{3}+2 x^{2}-8 x-5$ by $x^{2}+3$. State the quotient and remainder
9. For $f(x)=\frac{6 x+4}{4 x+5}$
(a) Find the inverse function of f.
(b) Do long division on both f and f^{-1}, and rewrite each as a transformation of a parent function.
(c) Graph both f and f^{-1} on the same set of coordinate axes (without using a calculator).
(d) Describe the relationship between the graphs of f and f^{-1}.
(e) State the domain and range of both f and f^{-1}.
10. For $f(x)=2 x^{2}-k x^{2}+3 x-k$, find the value of k so that when $f(x)$ is divided by $x+1$ the remainder is $\frac{2}{3}$.
