Name \qquad Date \qquad Period \qquad

Worksheet 2.10—Derivatives of Log Functions \& LOG DIFF

Show all work. No calculator unless otherwise stated.

Short Answer

1. Find the derivative of each function with respect to x, given that a is a constant
(a) $y=x^{a}$
(b) $y=a^{x}$
(c) $y=x^{x}$
(d) $y=a^{a}$
2. Evaluate each of the following. Remember to simplify early and often (especially when you have logs).
(a) $\frac{d}{d x}\left[e^{2 \ln x}\right]=$
(b) $\frac{d}{d x}\left[\log _{a} a^{\sin x}\right]=$
(c) $\frac{d}{d x}\left[\log _{2} 8^{x-5}\right]=$
3. For each of the following, find $\frac{d y}{d x}$. Look to simplify using the properties of logs first.
(a) $y=\log _{3} \frac{x \sqrt{x-1}}{2}$
(b) $y=x^{3 / 2} \log _{2} \sqrt{x+1}$
(c) $y=\ln \left|\frac{\cos x}{\cos x-1}\right|$
(d) $y=\ln \left(\ln \frac{1}{x}\right)$
(e) $y=\ln ^{3} x$
(f) $y=x \ln x^{2}$
(g) $y=\log _{3}(1+x \ln x)$
(h) $y=\ln \sqrt[4]{\frac{4 x-2}{3 x+1}}$
4. Use implicit differentiation to find $\frac{d y}{d x}$.
(a) $x^{2}-3 \ln y+y^{2}=10$
(b) $\ln x y+5 x=30$
5. Find an equation of the tangent line to the graph of $x+y-1=\ln \left(x^{2}+y \sqrt{2}\right)$ at $(1,0)$.
6. A line with slope m passes through the origin and is tangent to $y=\ln \left(\frac{x}{3}\right)$. What is the value of m ?
7. Find an equation for a line that is tangent to the graph of $y=e^{x}$ and goes through the origin.
8. Find the point where the tangent line to the curve $y=e^{-x}$ is perpendicular to the line $-2 x+y=8$.
9. Use Logarithmic Differentiation to evaluate the following.
(a) $\frac{d}{d x}\left[\sqrt[5]{\frac{(x-3)^{4}\left(x^{2}+1\right)}{(2 x-5)^{3}}}\right]=$
(b) If $y=x^{1 / \ln x}$, find $\frac{d y}{d x}$.
10. Let $f(x)=\ln \left(1-x^{2}\right)$.
(a) State the domain of f.
(b) Find $\lim _{x \rightarrow-1^{-}} f(x)$
(c) Find $f^{\prime}(x)$.
(d) State the domain of $f^{\prime}(x)$.
(d) Explain why $f^{\prime \prime}(x)<0$ for all x in the domain of f.

Multiple Choice

\qquad 11. Use the properties of logs to simplify, as much as possible, the expression:

$$
\log _{a} 32+\frac{4}{5} \log _{a} 4-\frac{4}{5} \log _{a} 2+\log _{a} \frac{1}{2^{\frac{14}{5}}}
$$

(A) $\log _{a} 128$
(B) $\log _{a} 8$
(C) $\log _{a} 32$
(D) $\log _{a} 2^{-7}$
(E) 8
12. Simplify the expression: $2^{5\left(\log _{2} e\right) \ln x}$
(A) 5^{x}
(B) e^{11}
(C) x^{5}
(D) x^{10}
(E) x^{2}
13. Which of the following is the domain of $f^{\prime}(x)$ if $f(x)=\log _{2}(x+3)$?
(A) $x<-3$
(B) $x \leq 3$
(C) $x \neq-3$
(D) $x>-3$
(E) $x \geq-3$
___ 14. If $f(x)=\left(x^{2}+1\right)^{(2-3 x)}$, then $f^{\prime}(1)=$
(A) $-\frac{1}{2} \ln (8 e)$
(B) $-\ln (8 e)$
(C) $-\frac{3}{2} \ln 2$
(D) $-\frac{1}{2}$
(E) $\frac{1}{8}$
\qquad 15. Determine if $\lim _{x \rightarrow \infty}[\ln (2+5 x)-\ln (2+3 x)]$ exists, and if it does, find its value.
(A) $\ln \frac{1}{2}$
(B) $\ln \frac{5}{3}$
(C) $\ln \frac{3}{5}$
(D) $\ln 2$
(E) Does Not Exist
16. Find the derivative of $f(t)=\frac{2 \ln t}{3+\ln t}$.
(A) $f^{\prime}(t)=\frac{2}{t(3+\ln t)^{2}}$
(B) $f^{\prime}(t)=\frac{6 \ln t}{(3+\ln t)^{2}}$
(C) $f^{\prime}(t)=\frac{6}{(3+\ln t)^{2}}$
(D) $f^{\prime}(t)=\frac{2}{t(3+\ln t)}$
(E) $f^{\prime}(t)=\frac{6}{t(3+\ln t)^{2}}$
___ 17. Determine the derivative of f when $f(x)=x^{4 x}$
(A) $f^{\prime}(x)=(\ln x+4) x^{4 x}$
(B) $f^{\prime}(x)=4(\ln x+1) x^{4 x}$
(C) $f^{\prime}(x)=4(\ln x+1)$
(D) $f^{\prime}(x)=(\ln x+1) x^{4 x}$
(E) $f^{\prime}(x)=4 x^{4(x-1)}$
\qquad 18. Find the derivative of f when $f(x)=x[7 \sin (\ln x)+2 \cos (\ln x)]$.
(A) $f^{\prime}(x)=x[5 \sin (\ln x)+9 \cos (\ln x)]$
(B) $f^{\prime}(x)=5 \sin (\ln x)-9 \cos (\ln x)$
(C) $f^{\prime}(x)=5 \sin (\ln x)+9 \cos (\ln x)$
(D) $f^{\prime}(x)=9 \sin (\ln x)+5 \cos (\ln x)$
(E) $f^{\prime}(x)=x[9 \sin (\ln x)+5 \cos (\ln x)]$

