Date _____Period_____ Name

Worksheet 2.9—Derivatives of Exponential Functions

Show all work. No calculator unless otherwise stated.

Short Answer

For 1-8, Find $\frac{dy}{dx}$. You do not need to simplify your answers.

1.
$$y = e^{2x^2 + 2x}$$

2.
$$v = 6^{2x}$$

2.
$$y = 6^{2x}$$
 3. $y = \sin^2 x + 2^{\sin x}$ 4. $y = xe^2 - e^{x^2}$

4.
$$y = xe^2 - e^{x^2}$$

$$5. \ \ y = \frac{e^x + e^{-x}}{4}$$

6.
$$y = (2e^x - e^{-x})^3$$
 7. $y = 2^{-3/x}$ 8. $5 = 3e^{xy} + x^2y + xy^2$

7.
$$y = 2^{-3/x}$$

$$8. \ 5 = 3e^{xy} + x^2y + xy^2$$

9. Find the equation of the indicated line to the graph of the given equation at the indicated point.

(a)
$$y = xe^x - e^x$$
 at $x = 1$, tangent line

(b)
$$xe^y + ye^x + 1 = 2e^x$$
 at $(0,1)$, normal line

10. Find
$$\frac{d^2y}{dx^2}$$
 for $y = 2\sin(4^{x^2})$

11. (Calculator permitted) Find the point of the graph of $y = e^{-x}$ where the normal line to the curve passes through the origin. (Hint: write two different expressions for the slope of the normal line in terms of x, equate the two expressions, then solve for x. A sketch would help also.)

12. (Calculator permitted) Compare each of the following numbers with the number e. Is the number less than or greater than e? BTW: 5! is read as "5 factorial" and is equal to $5 \cdot 4 \cdot 3 \cdot 2 \cdot 1$. The factorial button is found on your TI calculator under "MATH," "PRB," "#4."

(a)
$$\left(1 + \frac{1}{1,000,000}\right)^{1,000,000}$$

(b)
$$\frac{1}{0!} + \frac{1}{1!} + \frac{1}{2!} + \frac{1}{3!} + \frac{1}{4!} + \frac{1}{5!} + \frac{1}{6!}$$

Multiple Choice

13. Find the value of $\lim_{x \to \infty} \left(\frac{2e^{2x} + 5e^{-2x}}{e^{2x} - 4e^{-2x}} \right)$ (A) -2 (B) $-\frac{1}{2}$ (C) 2 (D) $-\frac{5}{4}$ (E) $\frac{1}{2}$

_____14. Determine f'(x) when $f(x) = e^{\sqrt{3x+4}}$

(A)
$$f'(x) = \frac{3e^{\sqrt{3x+4}}}{\sqrt{3x+4}}$$

(B)
$$f'(x) = \frac{3}{2}e^{\sqrt{3x+4}}\sqrt{3x+4}$$

(C)
$$f'(x) = \frac{3e^{\sqrt{3x+4}}}{2\sqrt{3x+4}}$$

(D)
$$f'(x) = 3e^{\sqrt{3x+4}}$$

(E)
$$f'(x) = \frac{e^{\sqrt{3x+4}}}{2\sqrt{3x+4}}$$

_____15. Find $\frac{dy}{dx}$ when $y = \cos(e^x) + e^x \sin(e^x)$

(A)
$$\frac{dy}{dx} = e^{2x} \sin(e^x)$$

(B)
$$\frac{dy}{dx} = e^{2x} \cos(e^x)$$

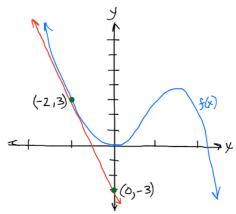
(C)
$$\frac{dy}{dx} = -e^{2x} \cos(e^x)$$

(D)
$$\frac{dy}{dx} = e^x \cos(e^x)$$

(E)
$$\frac{dy}{dx} = -e^{2x} \sin(e^x)$$

16. Determine all values of r for which the function $y = e^{rx}$ satisfies the equation

$$\frac{d^2y}{dx^2} - 2\frac{dy}{dx} - 8y = 0$$


- (A) r = 2, 4
- (B) r = -3, 5
- (C) r = -4, 2
- (D) r = -4, -2
- (E) r = -2, 4

_____17. If f is the function defined by $f(x) = e^{2x} + 6e^{-2x}$, find the value of $f'(\ln 2)$.

- (A) 6
- (B) $\frac{9}{2}$
- (C) $\frac{11}{2}$
- (D) 5
- (E) $\frac{13}{2}$

18. If $f(x) = x^3 e^{2x}$, on what interval(s) is $f'(x) \ge 0$?

- (A) $\left(-\infty,0\right] \cup \left[\frac{3}{2},\infty\right)$
- (B) $\left(-\infty, -\frac{3}{2}\right]$
- $(C)\left(-\infty, -\frac{3}{2}\right] \cup \left[0, \infty\right)$
- (D) $\left[-\frac{3}{2},\infty\right)$
- $(E)\left(-\infty,\frac{3}{2}\right]$

- 19. The figure above shows the graph of the function f and the line tangent to the graph of f at x = -2. Let g be the function given by $g(x) = e^x \cdot f(x)$. What is the value of g'(-2)?

- (A) $\frac{6}{a^2}$ (B) 0 (C) $-\frac{3}{a^2}$ (D) $\frac{3}{a^2} \frac{3}{a^3}$ (E) -3

- 20. Let f be the function defined by $f(x) = 3x + 2^x$. If $g(x) = f^{-1}(x)$ for all x and the point (0,1) is on the graph of f, what is the value of g'(1)?
- (A) $\frac{1}{3}$ (B) $\frac{1}{4}$ (C) $\frac{1}{3+\ln 2}$ (D) $\frac{1}{5}$ (E) $\frac{1}{5\ln 2}$

_____21. Let $f(x) = \begin{cases} ax + b, & x < 0 \\ e^x, & x \ge 0 \end{cases}$. If f(x) is differentiable for all x, what is the value of a + b

- (A) -1 (B) 0 (C) 1 (D) 2

- (E)3

 $\underline{\qquad} 22. \lim_{h \to 0} \frac{3e^{3(3+h)} - 3e^9}{h} =$ (A) 0 (B) 3 (C) $3e^9$ (D) $9e^9$ (E) nonexistent

23. A unicorn moves along the x-axis so that its position at time t, in seconds, $t \ge 0$ is given by $x(t) = 3 \cdot \left(\frac{1}{2}\right)^{2t}$ feet. In ft/sec², what is the unicorn's acceleration at t = 1 second? Note: $\ln^2 x = (\ln x)^2.$

- (A) 3 (B) $\ln^2\left(\frac{1}{2}\right)$ (C) 12 (D) $3\ln 2$ (E) $3\ln^2 2$