Name \qquad Date \qquad Period \qquad
Worksheet 3.5— $f, f^{\prime}, f^{\prime \prime}$
Show all work. No calculator unless otherwise stated.

Multiple Choice

\qquad 1. The graph above shows the graph of $f(x)$ for some function $f(x)$ on $[a, b]$. Which of the following graphs could be the graph of $f^{\prime}(x)$ on $[a, b]$?
(A)

(B)

(C)

(D)

(E)

Questions 2-3 refer to the graph and information below.

The graph above shows $f^{\prime}(x)$ for some function $f(x)$ on $[0,8]$.
\qquad 2. How many points of inflection does the graph of f have on $[0,8]$?
(A) Two
(B) Three
(C) Four
(D) Five
(E) Six
3. Which of the following accurately describes the relative extrema of $f(x)$ on $[0,8]$?
(A) 3 Relative Maxima and 3 Relative Minima
(B) 2 Relative Maxima and no Relative Minima
(C) 1 Relative Maximum and 1 Relative Minimum
(D) 1 Relative Maximum and no Relative Minima
(E) No Relative Maxima and 1 Relative Minimum

4. The graph above shows the graph of $f^{\prime}(x)$ for some function $f(x)$ on $[a, c]$. Which of the following could be the graph of $f(x)$?

(D)

\qquad 5. Which of the following could represent the graph of a function $f(x)$ and its derivative $f^{\prime}(x)$?

(A) I only
(B) II only
(C) III only
(D) I and III only
(E) II and III only

\qquad 6. The graph of $y=f(x)$ is shown in the figure above. If f has a critical value at $x=c$ and an inflection value at $x=b$, on which of the following intervals are $\frac{d y}{d x}>0$ and $\frac{d^{2} y}{d x^{2}}<0$?
I. $a<x<b$
II. $b<x<c$
III. $c<x<d$
(A) I only
(B) II only
(C) III only
(D) I and II only
(E) II and III only
\qquad 7. Let f be a function that is continuous on the closed interval $[-2,3]$ such that $f^{\prime}(0)$ does not exist, $f^{\prime}(2)=0$, and $f^{\prime \prime}(x)<0$ for all x except $x=0$. Which of the following could be the graph of f.
(A)

(B)

(C)

(D)

(E)

8. The figure above shows the graph of f^{\prime}, the derivative of the function f. If $f(0)=0$, which of the following could be the graph of f ?
(A)

(B)

(C)

(D)

(F.)

Short Answer

9. (AB4 2005) Let f be a function that is continuous on the interval $[0,4)$. The function f is twice differentiable except at $x=2$. The function f and its derivatives have the properties indicated in the table below.

x	0	$0<x<1$	1	$1<x<2$	2	$2<x<3$	3	$3<x<4$
$f(x)$	-1	Negative	0	Positive	2	Positive	0	Negative
$f^{\prime}(x)$	4	Positive	0	Positive	DNE	Negative	-3	Negative
$f^{\prime \prime}(x)$	-2	Negative	0	Positive	DNE	Negative	0	Positive

(a) For $0<x<4$, find all values of x at which f has a relative extremum. Determine whether f has a relative maximum or a relative minimum at each of these values. Justify your answer.
(b) Find the coordinates of any inflection points on the graph of f. Justify your answer.
(c) On the axes below, sketch the graph of a function that has all the characteristics of f.

10. (AB3 1981) Let f be the function defined by $f(x)=12 x^{2 / 3}-4 x$
(a) Find the intervals on which f is increasing.
(b) Find the x - and y-coordinates of all relative maximum points. Justify.
(c) Find the x - and y-coordinates of all relative minimum points. Justify.
(d) Find the intervals on which f is concave downward.
(e) Using the information found in parts (a), (b), (c), and (d), sketch the graph of f.
11. (AB5 1980) Given the function f defined by $f(x)=\cos x-\cos ^{2} x$ for $-\pi \leq x \leq \pi$. (a) Find the x-intercepts of the graph of f.
(b) Find the x - and y-coordinates of all relative maximum points. Justify.
(c) Find the intervals on which the graph of f is increasing.
(d) Using the information found in parts (a), (b), and (c), sketch the graph of f.
12. Sketch the graph of a function that satisfies all of the following conditions.
(a) $f^{\prime}(x)>0$ for all $x \neq 1, \lim _{x \rightarrow 1^{-}} f(x)=\infty, \lim _{x \rightarrow 1^{+}} f(x)=-\infty, f^{\prime \prime}(x)>0$ if $x<1$ or $x>3$, and $f^{\prime \prime}(x)<0$ if $1<x<3$.
(b) $f^{\prime}(x)>0$ if $-2<x<2, f^{\prime}(x)<0$ if $x<-2$ and $x>2, f^{\prime}(2)=0, \lim _{x \rightarrow \infty} f(x)=1$, $f(-x)=-f(x), f^{\prime \prime}(x)<0$ if $0<x<3$, and $f^{\prime \prime}(x)>0$ if $x>3$

For 13-15, use your knowledge of $f, f^{\prime}, f^{\prime \prime}$ along with any other non-calculator information you can gather (intercepts, end-behavior, discontinuities, symmetry, etc) to sketch the graphs of the following function.
13. $f(x)=2 x^{5 / 3}-5 x^{4 / 3}$
14. $g(x)=x \sqrt[3]{x^{2}-4}$
15. $h(x)=\frac{x^{3}}{x^{2}+1}$

