Name_______Date______Period_____

Worksheet 7.1—Intro to Parametric & Vector Calculus

Show all work. No calculator unless explicitly stated.

Short Answer

1. If $x = t^2 - 1$ and $y = e^{t^3}$, find $\frac{dy}{dx}$.

2. If a particle moves in the xy-plane so that at any time t > 0, its position vector is $\langle \ln(t^2 + 5t), 3t^2 \rangle$, find its velocity vector at time t = 2.

3. A particle moves in the xy-plane so that at any time t, its coordinates are given by $x = t^5 - 1$, $y = 3t^4 - 2t^3$. Find its acceleration vector at t = 1.

4. If a particle moves in the xy-plane so that at time t, its position vector is $\left\langle \sin\left(3t - \frac{\pi}{2}\right), 3t^2 \right\rangle$, find the velocity vector at time $t = \frac{\pi}{2}$.

5. A particle moves on the curve $y = \ln x$ so that its x-component has velocity x'(t) = t + 1 for $t \ge 0$. At time t = 0, the particle is at the point (1,0). Find the position of the particle at time t = 1.

6. A particle moves in the xy-plane in such a way that its velocity vector is $\langle 1+t,t^3 \rangle$. If the position vector at t = 0 is $\langle 5,0 \rangle$, find the position of the particle at t = 2.

7. A particle moves along the curve xy = 10. If x = 2 and $\frac{dy}{dt} = 3$, what is the value of $\frac{dx}{dt}$?

8. The position of a particle moving in the xy-plane is given by the parametric equations $x = t^3 - \frac{3}{2}t^2 - 18t + 5$ and $y = t^3 - 6t^2 + 9t + 4$. For what value(s) of t is the particle at rest?

9. A curve *C* is defined by the parametric equations $x = t^3$ and $y = t^2 - 5t + 2$. Write an equation of the line tangent to the graph of *C* at the point (8, -4).

10. (Calculator Permitted) A particle moves in the xy-plane so that the position of the particle is given by $x(t) = 5t + 3\sin t$ and $y(t) = (8-t)(1-\cos t)$. Find the velocity vector at the time when the particle's horizontal position is x = 25.

Free Response:

- 11. The position of a particle at any time $t \ge 0$ is given by $x(t) = t^2 3$ and $y(t) = \frac{2}{3}t^3$.
 - (a) Find the magnitude of the velocity vector at time t = 5.

(b) Find the total distance traveled by the particle from t = 0 to t = 5.

(c) Find $\frac{dy}{dx}$ as a function of x.

- 12. Point P(x, y) moves in the xy-plane in such away that $\frac{dx}{dt} = \frac{1}{t+1}$ and $\frac{dy}{dt} = 2t$ for $t \ge 0$.
 - (a) Find the coordinates of P in terms of t when t = 1, $x = \ln 2$, and y = 0.

(b) Write an equation expressing y in terms of x.

(c) Find the average rate of change of y with respect to x as t varies from 0 to 4.

(d) Find the instantaneous rate of change of y with respect to x when t = 1.

13. Consider the curve C given by the parametric equations $x = 2 - 3\cos t$ and $y = 3 + 2\sin t$, for

$$-\frac{\pi}{2} \le t \le \frac{\pi}{2} \,.$$

(a) Find $\frac{dy}{dx}$ as a function of t.

(b) Find an equation of the tangent line at the point where $t = \frac{\pi}{4}$.

(c) (Calculator Permitted) The curve *C* intersects the *y*-axis twice. Approximate the length of the curve between the two *y*-intercepts.

Multiple Choice:

- 14. A parametric curve is defined by $x = \sin t$ and $y = \csc t$ for $0 < t < \frac{\pi}{2}$. This curve is
 - (A) increasing & concave up (B) increasing & concave down (C) decreasing & concave up (D) decreasing & concave down (E) decreasing with a point of inflection

- 15. The parametric curve defined by $x = \ln t$, y = t for t > 0 is identical to the graph of the function
 - (A) $y = \ln x$ for all real x (B) $y = \ln x$ for x > 0 (C) $y = e^x$ for all real x (D) $y = e^x$ for x > 0 (E) $y = \ln(e^x)$ for x > 0

16. The position of a particle in the xy-plane is given by $x = t^2 + 1$ and $y = \ln(2t + 3)$ for all $t \ge 0$. The acceleration vector of the particle is

(A)
$$\left(2t, \frac{2}{2t+3}\right)$$
 (B) $\left(2t, -\frac{4}{\left(2t+3\right)^2}\right)$ (C) $\left(2, \frac{4}{\left(2t+3\right)^2}\right)$ (D) $\left(2, \frac{2}{\left(2t+3\right)^2}\right)$ (E) $\left(2, -\frac{4}{\left(2t+3\right)^2}\right)$