

Déjà Vu, It's Algebra 2! Lesson 05

Absolute Value Equations, Inequalities, & Functions

Absolute value equations and inequalities can be used to represent acceptable ranges of a product or margins of error. To understand how to work with them, we need to first look at two types of compound statements involving inequalities.

A <u>Disjunction</u> is a compound statement that uses the word "_____." It is an inequality with two _____ intervals.

Let's solve some:

Example:

Solve each of the inequalities and sketch a linear graph showing the solutions.

a)
$$x-5 < -2$$
 or $-2x \le -10$ b) $\frac{1}{2}c \ge -2$ and $2c+1 < 1$

The absolute value of a number x, written as |x|, is the distance from x to zero on the number line. Because we are interested in the distance and not the directions, absolute value is ALWAYS NONNEGATIVE!!

Here's its precise mathematical definition:

$$egin{array}{l} egin{array}{ccc} egin{array}$$

Absolute value equations and inequalities can be represented by compound statements:

From here we can generalize the three cases for general solutions. MEMORIZE THESE!!

$$|x| = a$$

$$|x| = a$$

$$x = -a \text{ or } a$$

$$x = -a \text{ or } a$$

$$|x| < a$$

$$|x| > a$$

$$x < -a \text{ or } x > a$$

We can replace the < with \leq and the > with \geq without loss of generality.

Let's put it into practice and solve some equations and inequalities involving the absolute value.

Example:

Solve: |x - 7| = 5

This can be read as "the distance from *x* to seven is 5 units."

Solve:
$$\frac{|2x-7|}{3} \le 1$$

Remember: Disjunctions: $|x| = \alpha$, $|x| \ge \alpha$, $|x| > \alpha$ The greatOR than case

Conjunctions: $|x| \le a$, |x| < aThe Less thAND case

Let's look at the absolute value function: f(x) = |x|

X	y = x
5	
-2	
-1	
0	
1	
2	
3	

It is a function composed of two linear pieces meeting at the vertex at (O,O). The slope of the left piece is -1. The slope on the right is 1.

Just like with linear functions, we can use the absolute value function to solve absolute value equations!

Example: Solve: 3|x-1| = 6Numeric:

Graphic:

First get zero on one side. Y1: 3|x-1|-6 = 0

Verify:

Déjà RE-Vu

Absolute value inequalities are useful for expressing acceptable intervals of values, such as margins of error, standard deviations or tolerances. Here's an example:

A thermometer measures 5 body temperatures accurately to within $\pm 0.15^{\circ}F$. Which of the following represents the actual temperature *T* of a person in this thermometer measures a person's temperature as 98.5°*F*?

(A) <i> T</i> −98.5 <i> </i> ≤ 0.15	(B) <i>T</i> −98.5 ≥ 0.15
(C) <i>T</i> + 98.5 ≤ 0.15	(D) <i>T</i> + 98.5 ≥ 0.15