

Déjà Vu, It's Algebra 2! Lesson $\odot 6$ Linear Systems of Equations

Systems of linear equations can be used to represent linear relationships involving different constant rates.

A system of equations is a set of two or more equations containing two or more variables.

A linear system is a system of equations containing only linear equations.

Recall that a line is an infinite set of points, ordered pairs, that are solutions to a linear equation.

A solution set to a system of equations is the set of all points that satisfy each equation in the system.

Example:
For the following system, determine if the following points are solutions:

$$
\left\{\begin{array}{l}
x-2 y=-6 \\
2 x=8-y
\end{array}\right.
$$

(A) $(2,4)$
(B) $(3,2)$

Can a linear system have more than one solution?

The graphical solution to a system is the point in common between the graphs of each line, or the POINT OF INTERSECTION.

Example:

$$
\left\{\begin{array}{l}
x-3 y=-10 \\
2 x+y=1
\end{array}\right.
$$

Let's solve this one first by graphing.

So to answer the question:
Can a linear system have more than one solution?

We can also solve systems algebraically using a variety of methods.
Method 1: Substitution
$\left\{\begin{array}{l}x-3 y=-10 \\ 2 x+y=1\end{array}\right.$

Method 2: Linear Combination / Elimination
$\left\{\begin{array}{l}x-3 y=-10 \\ 2 x+y=1\end{array}\right.$

Systems of equations can be used to model behavior in the real world. In these cases, we must create our own equations from given information.

Example:

A veterinarian needs 60 pounds of dog food that is 15% protein. She will combine a beef mix that is 18% protein with a pork mix that is 9% protein. How many pounds of each does she need to make the 15% protein mix?

Déjà RE-Vu

How do you decide which method to use when solving linear systems?

Graphing and tables: When you're interested in a rough solution or estimation of a solution -or- when you have access to your graphing calculator.

$$
\left\{\begin{array}{l}
y=3 x-4 \\
y=-\frac{1}{4} x+2
\end{array}\right.
$$

Substitution: When it is simple to solve one of the equations for a single variable.
$\left\{\begin{array}{l}-2 x+5 y=11 \\ 5 x+y=-3\end{array}\right.$
Notice in this equation, solving for either variable in the first equation will produce fractional coefficients. In the second equation, though, it is easy to solve for the y variable.

Also realize that if both equations are solved for y, like in the first example, setting them equal to each other is a form of substitution.

$$
\left\{\begin{array}{l}
y=3 x-4 \\
y=-\frac{1}{4} x+2
\end{array} \rightarrow 3 x-4=-\frac{1}{4} x+2\right.
$$

Also notice that if you don't like the fractions, you can multiple both sides by the least common denominator:

$$
4(3 x-4)=4\left(-\frac{1}{4} x+2\right)
$$

$12 x-16=-x+8$
$13 x=24$
$x=\frac{24}{13}=1.846153$

Linear Combo / Elimination: When variables have coefficients that are the same, opposite, a multiple of each other, or neither!! It requires each equation to be written in corresponding order.
$\left\{\begin{array}{l}4 x+7 y=-25 \\ -12 x-7 y=19\end{array}\right.$
Notice the coefficients of y in each equation are opposites. Simple add the two equations.
The solution is $\left(\frac{3}{4},-4\right)$
What about in this case?
$\left\{\begin{array}{l}5 x-3 y=42 \\ 8 x+5 y=28\end{array} \rightarrow\left\{\begin{array}{l}5(5 x-3 y=42) \\ 3(8 x+5 y=28)\end{array} \rightarrow\left\{\begin{array}{l}25 x-15 y=210 \\ 24 x+15 y=84\end{array}\right.\right.\right.$
The solution is $(6,-4)$

References:

http://www.lenoir.k12.nc.us/banks/j0295472.gifU
Show Background from:
http://www.fs.uiuc.edu/blue/bluenote_Medex.htm

