DéJà VU, IT'S ALGEBRA 2! LESSON O8

 INTRODUCTION TO MATRICESWE LIVE IN AN AGE OF INFORMATION. IT'S AT OUR FINGERTIPS. WITH ALL THIS INFORMATION, IT IS IMPORTANT TO BE ABLE TO INTERPRET AND MAKE SENSE OF IT ALL. ONE WAY TO ORGANIZE INFORMATION IS IN A RECTANGULAR ARRAY CALLED A \qquad .

COLLEGTED SPOILS BY RIVAL PIRATES IN THE HIGH SEAS (IN GOLD COINS)			
PIRATE	$\boldsymbol{J U N E}$	$\boldsymbol{J U L Y}$	$\boldsymbol{A U G U S T}$
CAPTAIN Y	205	157	169
X-BEARD	358	$5 O I$	678

$$
P=\left[\begin{array}{ccc}
205 & 157 & 169 \\
358 & 501 & 678
\end{array}\right] \longleftarrow \quad 2 \text { ROWS }
$$

3 COLUMNS

MR KORPI, 2OO7-2008

A MATRIX IS AN ORDERED SET OF NUMBERS LISTED IN RECTANGULAR FORM, REPRESENTED BY A CAPITAL LETTER

EXAMPLE:

LET A DENOTE THE FOLLOWING MATRIX.

$$
A=\left[\begin{array}{llll}
2 & 5 & 7 & 8 \\
5 & 6 & 8 & 9 \\
3 & 9 & 0 & 1
\end{array}\right]
$$

THIS MATRIX A HAS THREE ROWS AND FOUR COLUMNS. WE SAY ITS __ IS 3×4, OR SIMPLY THAT IT IS A 3×4 MATRIX. EACH VALUE IN THE MATRIX IS CALLED AN THE OF AN ENTRY IS ITS LOCATION IN A MATRIX, EXPRESSED BY USING THE LOWERCASE MATRIX LETTER WITH THE ROW AND COLUMN NUMBER AS SUBSCRIPTS.

$$
A=\left[\begin{array}{llll}
2 & 5 & 7 & 8 \\
5 & 6 & 8 & 9 \\
3 & 9 & 0 & 1
\end{array}\right]
$$

IN THE ABOVE MATRIX THE NUMBER 3 IS LOCATED IN THE $3^{\text {RD }}$ ROW AND THE $1^{\text {ST }}$
COLUMN, SO $a_{3,1}=3$
IF A MATRIX, A, HAS THE SAME NUMBER OF ROWS AS COLUMNS, WE CALL IT A MATRIX. IN A SQUARE MATRIX, THE ENTRIES $a_{i, i}$, WHERE $i=1,2,3, \ldots$, ARE CALLED DIAGONAL ELEMENTS.

NOTE: THERE IS NO DIFFERENCE BETWEEN A I X I MATRIX AND AN ORDINARY NUMBER IN OTHER WORDS, $[5]=5$

A \qquad MATRIX IS A MATRIX WITH ONE ROW.

$$
R=\left[\begin{array}{lll}
5 & -2 & 1
\end{array}\right]
$$

A MATRIX IS A

MATRIX WITH ONE COLUMN.

$$
C=\left[\begin{array}{c}
5 \\
-2 \\
-6
\end{array}\right]
$$

ONE OF THE ADVANTAGES OF USING MATRICES TO ORGANIZE INFORMATION IS BECAUSE WE CAN DEFINE ARITHMETIC OPERATIONS ON THEM THAT CAN BE PEREORMED IN A SYSTEMATIC PROCESS.

FOR INSTANCE, WE CAN ADD OR SUBTRACT MATRICES, OR MULTIPLY BY A SCALAR MULTIPLE.

TO ADD ORSUBTRACT TWO MATRICES, CALL

 THEM A AND B, THEY MUST HAVE THE SAME TO PEREORM THE OPERATIONS, WE SIMPLY ADD THE ENTRIES. TO MULTIPLY BY A SCALAR WE DISTRBUTE TO EACH ENTRY. EXAMPLE:$$
\begin{array}{lll}
W=\left[\begin{array}{cc}
3 & -2 \\
1 & 0
\end{array}\right], & X=\left[\begin{array}{ccc}
4 & 7 & 2 \\
5 & 1 & -1
\end{array}\right] \\
Y=\left[\begin{array}{cc}
1 & 4 \\
-2 & 3
\end{array}\right] . & Z=\left[\begin{array}{ccc}
2 & -2 & 3 \\
1 & 0 & 4
\end{array}\right]
\end{array}
$$

PEREORM THE INDICATED OPERATIONS IF POSSIBLE.

2. $X-Z$
3. $x+y$
4. $3 Y-2 W$

WITH ARITHMETIC OPERATIONS, COME PROPERTIES OF EQUALITIES. HERE ARE SOME PROPERTIES OF EQUALITIES FOR MATRICES REPRESENTED THREE DIFFERENT WAYS.

VERBAL	NUMERIG	ALGEBRAIC
COMMUTATIVE PROPERTY: MATRIX ADDITION IS COMMUTATIVE	$\left[\begin{array}{ll}7 & 2 \\ 3 & 4\end{array}\right]+\left[\begin{array}{ll}1 & 2 \\ 4 & 1\end{array}\right]=\left[\begin{array}{ll}1 & 2 \\ 4 & 1\end{array}\right]+\left[\begin{array}{ll}7 & 2 \\ 3 & 4\end{array}\right]$	$A+B=B+A$
ASSOCIATIVE PROPERTY: MATRIX ADDITION IS ASSOCIATIVE	$\left(\left[\begin{array}{l}2 \\ 3\end{array}\right]+\left[\begin{array}{l}0 \\ 1\end{array}\right]\right)+\left[\begin{array}{l}5 \\ 4\end{array}\right]=\left[\begin{array}{l}2 \\ 3\end{array}\right]+\left(\left[\begin{array}{l}0 \\ 1\end{array}\right]+\left[\begin{array}{l}5 \\ 4\end{array}\right]\right)$	$A+B+C=(A+B)+C=A+(B+C)$
ADDITIVE IDENTITY: THE ZERO MATRIX IS THE ADDITIVE IDENTITY O	$\left[\begin{array}{ll}7 & 2 \\ 3 & 4\end{array}\right]+\left[\begin{array}{ll}0 & 0 \\ 0 & 0\end{array}\right]=\left[\begin{array}{ll}7 & 2 \\ 3 & 4\end{array}\right]$	$\boldsymbol{A}+0=\boldsymbol{A}$
ADDITIVE INVERSE: THE ADDITIVE INVERSE OF MATRIX A CONTAINS THE OPPOSITE ENTRY OF EACH CORRESPONDING ENTRY IN MATRIX A	$\left[\begin{array}{cc}5 & -2 \\ -6 & 9\end{array}\right]+\left[\begin{array}{cc}-5 & 2 \\ 6 & -9\end{array}\right]=\left[\begin{array}{ll}0 & 0 \\ 0 & 0\end{array}\right]$	IF $A+B=0$, THEN A AND B ARE ADDITIVE INVERSES

let's Do a little Algebra with Matrices.

EXAMPLE:

SOLVE FOR a, b, AND c IN THE FOLLOWING MATRIX EQUATION.

$$
2\left[\begin{array}{cc}
3 & a \\
-2 & -8
\end{array}\right]+\left[\begin{array}{cc}
11 & -4 \\
b & 12
\end{array}\right]=\left[\begin{array}{cc}
17 & -10 \\
9 & c
\end{array}\right]
$$

DéJà RE-VU

THE TABLE SHOWS PRICES FOR THREE TYPES OF PIRATE CLOTHING.

COST OF PIRATE CLOTHING (\$ ${ }^{(\$)}$

	DiRTY wITHOUT HOLES	DIRTY WITH HOLES	DIRTY WITH HOLES AND STAINS
SHIRT	23.00	21.00	15.00
PANTS	14.00	13.00	9.00
HAT	11.00	9.50	6.00

1. Display the data as a matrix C.

2. What are the dimensions of C ?
3. What is the entry at $c_{3,2}$? What does it REPRESENT?

COST OF PIRATE CLOTHING (\$)			
	$\begin{aligned} & \text { DiRTY without } \\ & \text { Holes } \end{aligned}$	DIRTY WITH HOLES	Dirty with holes and
SHIRT	23.00	21.00	15.00
PANTS	14.00	13.00	9.00
HAT	11.00	9.50	6.00
$C=\left[\begin{array}{ccc} 23.00 & 21.00 & 15.00 \\ 14.00 & 13.00 & 9.00 \\ 11.00 & 9.50 & 6.00 \end{array}\right]$ 4. WHAT IS THE ADDRESS OF THE ENTRY 14.00			
5. USE,	SCALAR PROD IS AN 8.25%	UCT TO FIND URCHARGE	HE TOTAL PRICE IF EACH ITEM.

REFERENCES:

HTTP://GO.HRW.COM
HTTP://WWW.FREEWEBS.COM/JENNIFERANDCONNOR/TALKSLIKEAPIRATE.HTM
HTTP://WWW.THEVIRTUALVINE.COM/PIRATES.HTML
HTTP://WWW.KIDSPLAYGROUND.COM/PIRATE PARTIES.HTM
SHOW BACKDROP FROM:
HTTP://WWW.INTERACTIVEPARTY.COM/DISPLAYIMAGE.PHP?MODE ITEMEID 574

JOKE:
Q: HOW DOES A PIRATE LIKE HIS MATH HOMEWORK?
A: NICE AND H-AAAAAAAAR-D

