

DéJà VU, ITS ALGEBRA 2! LESSON 08 INTRODUCTION TO MATRICES

WE LIVE IN AN AGE OF INFORMATION. IT'S AT OUR FINGERTIPS. WITH ALL THIS INFORMATION, IT IS IMPORTANT TO BE ABLE TO INTERPRET AND MAKE SENSE OF IT ALL.

ONE WAY TO ORGANIZE INFORMATION IS IN A RECTANGULAR ARRAY CALLED A _____

COLLECTED SPOILS BY RIVAL PIRATES IN THE HIGH SEAS (IN GOLD COINS)

PIRATE	JUNE	JULY	AUGUST
CAPTAIN Y	205	157	169
X-BEARD	358	501	678

$$P = \begin{bmatrix} 205 & 157 & 169 \\ 358 & 501 & 678 \end{bmatrix} \leftarrow 2 \text{ ROWS}$$

$$3 \text{ COLUMNS}$$

MR KORPI 2007-2008

A MATRIX IS AN ORDERED SET OF NUMBERS LISTED IN RECTANGULAR FORM, REPRESENTED BY A CAPITAL LETTER

EXAMPLE:

LET A DENOTE THE FOLLOWING MATRIX.

$$A = \begin{bmatrix} 2 & 5 & 7 & 8 \\ 5 & 6 & 8 & 9 \\ 3 & 9 & 0 & 1 \end{bmatrix}$$

THIS MAT	RIX A HAS TH	IREE ROWS AND	FOUR
COLUMNS	. WE SAY ITS	5	IS
3x4, or s	IMPLY THAT I	t is a 3x4 mat	TRIX.
EACH VAI	LUE IN THE MA	ATRIX IS CALLEI) AN
THE		OF AN ENTRY IS	SITS
LOCATION	IN A MATRIX	, EXPRESSED BY	USING
THE LOWE	RCASE MATRI	X LETTER WITH	THE
ROW AND	COLUMN NU	MBER AS SUBSC	RIPTS.

$$A = \begin{bmatrix} 2 & 5 & 7 & 8 \\ 5 & 6 & 8 & 9 \\ \hline 3 & 9 & 0 & 1 \end{bmatrix}$$

In the above matrix the number 3 is located in the 3^{RD} row and the 1^{ST} column, so $a_{3.1} = 3$

IF A MATRIX, A, HAS THE SAME NUMBER OF ROWS AS COLUMNS, WE CALL IT A MATRIX. IN A SQUARE MATRIX, THE ENTRIES $a_{i,i}$, WHERE i = 1,2,3,..., ARE CALLED DIAGONAL ELEMENTS.

$$A = \begin{bmatrix} 1 & 2 & 3 \\ 0 & 5 & -2 \\ -5 & 1 & 8 \end{bmatrix} \leftarrow 3 \text{ COLUMNS}$$

NOTE: THERE IS NO DIFFERENCE BETWEEN A 1 x 1 MATRIX AND AN ORDINARY NUMBER IN OTHER WORDS, $\begin{bmatrix} \mathbf{5} \end{bmatrix} = \mathbf{5}$

A ____ MATRIX IS A MATRIX WITH ONE ROW. $R = \begin{bmatrix} 5 & -2 & 1 \end{bmatrix}$

A _____ MATRIX IS A MATRIX WITH ONE COLUMN.

$$C = \begin{bmatrix} 5 \\ -2 \\ -6 \end{bmatrix}$$

ONE OF THE ADVANTAGES OF USING MATRICES TO ORGANIZE INFORMATION IS BECAUSE WE CAN DEFINE ARITHMETIC OPERATIONS ON THEM THAT CAN BE PERFORMED IN A SYSTEMATIC PROCESS.

FOR INSTANCE, WE CAN ADD OR SUBTRACT MATRICES, OR MULTIPLY BY A SCALAR MULTIPLE.

TO ADD OR SUBTRACT TWO MATRICES, CALL
THEM A AND B THEY MUST HAVE THE SAME
______. TO PERFORM THE
OPERATIONS, WE SIMPLY ADD THE
______ ENTRIES. TO MULTIPLY BY
A SCALAR WE DISTRIBUTE TO EACH ENTRY.
EXAMPLE:

$$W = \begin{bmatrix} 3 & -2 \\ 1 & 0 \end{bmatrix}, \qquad X = \begin{bmatrix} 4 & 7 & 2 \\ 5 & 1 & -1 \end{bmatrix}$$

$$Y = \begin{bmatrix} 1 & 4 \\ -2 & 3 \end{bmatrix}, \qquad Z = \begin{bmatrix} 2 & -2 & 3 \\ 1 & 0 & 4 \end{bmatrix}$$

PERFORM THE INDICATED OPERATIONS IF POSSIBLE.

1.
$$W+Y$$

$$2. X-Z$$

$$3. X+Y$$

$$4.3Y-2W$$

WITH ARITHMETIC OPERATIONS, COME PROPERTIES OF EQUALITIES. HERE ARE SOME PROPERTIES OF EQUALITIES FOR MATRICES REPRESENTED THREE DIFFERENT WAYS.

VERBAL	NUMERIC	ALGEBRAIC
COMMUTATIVE PROPERTY: MATRIX ADDITION IS COMMUTATIVE	$\begin{bmatrix} 7 & 2 \\ 3 & 4 \end{bmatrix} + \begin{bmatrix} 1 & 2 \\ 4 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 2 \\ 4 & 1 \end{bmatrix} + \begin{bmatrix} 7 & 2 \\ 3 & 4 \end{bmatrix}$	A+B=B+A
ASSOCIATIVE PROPERTY: MATRIX ADDITION IS ASSOCIATIVE	$ \left(\begin{bmatrix} 2\\3 \end{bmatrix} + \begin{bmatrix} 0\\1 \end{bmatrix}\right) + \begin{bmatrix} 5\\4 \end{bmatrix} = \begin{bmatrix} 2\\3 \end{bmatrix} + \left(\begin{bmatrix} 0\\1 \end{bmatrix} + \begin{bmatrix} 5\\4 \end{bmatrix}\right) $	A+B+C=(A+B)+C=A+(B+C)
ADDITIVE IDENTITY: THE ZERO MATRIX IS THE ADDITIVE IDENTITY O	$\begin{bmatrix} 7 & 2 \\ 3 & 4 \end{bmatrix} + \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix} = \begin{bmatrix} 7 & 2 \\ 3 & 4 \end{bmatrix}$	A + 0 = A
ADDITIVE INVERSE: THE ADDITIVE INVERSE OF MATRIX A CONTAINS THE OPPOSITE ENTRY OF EACH CORRESPONDING ENTRY IN MATRIX A	$\begin{bmatrix} 5 & -2 \\ -6 & 9 \end{bmatrix} + \begin{bmatrix} -5 & 2 \\ 6 & -9 \end{bmatrix} = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$	If $A+B=0$, Then A and B are additive inverses

LET'S DO A LITTLE ALGEBRA WITH MATRICES.

EXAMPLE:

SOLVE FOR a, b, AND c IN THE FOLLOWING MATRIX EQUATION.

$$2\begin{bmatrix} 3 & \alpha \\ -2 & -8 \end{bmatrix} + \begin{bmatrix} 11 & -4 \\ b & 12 \end{bmatrix} = \begin{bmatrix} 17 & -10 \\ 9 & c \end{bmatrix}$$

DéJà RE-VU

THE TABLE SHOWS PRICES FOR THREE TYPES OF PIRATE CLOTHING.

COST OF PIRATE CLOTHING (\$)			
	DIRTY WITHOUT	DIRTY	DIRTY WITH HOLES AND
	HOLES	WITH HOLES	STAINS
SHIRT	23.00	21.00	15.00
PANTS	14.00	13.00	9.00
HAT	11.00	9.50	6.00

1. DISPLAY THE DATA AS A MATRIX C.

- 2. WHAT ARE THE DIMENSIONS OF C?
- 3. WHAT IS THE ENTRY AT $c_{3,2}$? WHAT DOES IT REPRESENT?

COST OF PIRATE CLOTHING (\$)			
	DIRTY WITHOUT	DIRTY	DIRTY WITH HOLES AND
	HOLES	WITH HOLES	STAINS
SHIRT	23.00	21.00	15.OO
PANTS	14.00	13.00	9.00
HAT	11.00	9.50	6.00

$$C = \begin{bmatrix} 23.00 & 21.00 & 15.00 \\ 14.00 & 13.00 & 9.00 \\ 11.00 & 9.50 & 6.00 \end{bmatrix}$$

4. WHAT IS THE ADDRESS OF THE ENTRY 14.00

5. USE A SCALAR PRODUCT TO FIND THE TOTAL PRICE IF THERE IS AN 8.25% SURCHARGE ON EACH ITEM.

REFERENCES.

HTTP://GO.HRW.COM

HTTP://WWW.FREEWEBS.COM/JENNIFERANDCONNOR/TALKSLIKEAPIRATE.HTM

HTTP://WWW.THEVIRTUALVINE.COM/PIRATES.HTML

HTTP://WWW.KIDSPLAYGROUND.COM/PIRATE PARTIES.HTM

SHOW BACKDROP FROM.

HTTP://WWW.INTERACTIVEPARTY.COM/DISPLAYIMAGE.PHP?MODE ITEMEID 574

JOKE:

Q. HOW DOES A PIRATE LIKE HIS MATH HOMEWORK?

A. NICE AND H-AAAAAAAAR-D