

Déjà Vu, It's Algebra 2! Lesson 11 Quadratic Functions: Graphs & Properties

Degree	Parent Function	Name	Graph
1	f(x) = x	Linear	
			Slanted Line
2	$f(x) = x^2$	Quadratic	Parabola

The origin of the term "quadratic" is Latin. It is derived from *quadratus* which is the past participle of *quadrare* which means "to make square." From this it is clear that part of the word is connected to the Latin word for "four," though not a way which one might expect: it refers to squaring, and a square is a regular four-sided figure.

Forms of Quadratic Equations

Standard Form: $f(x) = ax^2 + bx + c$ $a \neq 0$

Example:

Graph the following function using a table: $f(x) = x^2 + 2x - 1$

X	$f(x) = x^2 + 2x - 1$	(x, f(x))
-3	9-6-1 = 2	(-3,2)
-2	4-4-1 = -1	(-2, -1)
-1	1-2-1 = -2	(-1, -2)
0	O+O-1 = -1	(0 , -1)
1	1+2-1 = 2	(1,2)
2	4+4-1 = 7	(2,7)

Transformations of the parent function

 $f(x) = x^2$

TRANSLATIONS or SHIFTS Horizontal shift for h > 0

> $f(x-h) = (x-h)^{2}$ moves RIGHT *h* units Ex) $g(x) = (x-3)^{2}$

 $f(x+h) = (x+h)^{2}$ moves LEFT h units Ex) $g(x) = (x+3)^{2}$

Vertical Shift for k > 0

 $f(x) + k = x^2 + k$ moves UP k units Ex) $g(x) = x^2 + 3$

 $f(x) - k = x^2 - k$ moves DOWN k units Ex) $f(x) = x^2 - 3$

Example:

Put the following equation into vertex form, then sketch the graph using transformations.

 $f(x) = x^2 - 6x + 4$

Vertex Form: $f(x) = (x - 3)^2 - 5$ Right 3 units, down 5 units

Déjà RE-Vu Putting it all together

Put the following equation in vertex form, and then sketch the parabola.

$h(x) = -2x^2 + 16x - 29$

References: All images created with TI-Interactive software or TI-83+ calculator

For more information on applications of parabolas, check out the following website:

http://www.pen.k12.va.us/Div/Winchester/jhhs/math/lessons/calc2004/apppara b.html