Déjà Vu, It's Algebra 2! Lesson 11 Quadratic Functions: Graphs \& Properties

Degree	Parent Function	Name	Graph
1	$f(x)=x$	Linear	
2	$f(x)=x^{\mathbf{2}}$	Quadratic	

The origin of the term "quadratic" is Latin. It is derived from quadratus which is the past participle of quadrare which means "to make square." From this it is clear that part of the word is connected to the Latin word for "four," though not a way which one might expect: it refers to squaring, and a square is a regular four-sided figure.

Forms of Quadratic Equations

Standard Form: $f(x)=a x^{2}+b x+c \quad a \neq 0$
Example:
Graph the following function using a table:
$f(x)=x^{2}+2 x-1$

x	$f(x)=x^{2}+2 x-1$	$(x, f(x))$
-3	$9-6-1=2$	$(-3,2)$
-2	$4-4-1=-1$	$(-2,-1)$
-1	$1-2-1=-2$	$(-1,-2)$
0	$0+0-1=-1$	$(0,-1)$
1	$1+2-1=2$	$(1,2)$
2	$4+4-1=7$	$(2,7)$

Standard Form
$f(x)=a x^{2}+b x+c$
Axis of symmetry: the line $x=-\frac{b}{2 a}$ Vertex: $\left(-\frac{b}{2 a^{\prime}}, f\left(-\frac{b}{2 a}\right)\right) \quad y$-intercept: c

Vertex Form: $f(x)=a(x-h)^{2}+k$
Example:

$$
\begin{aligned}
& f(x)=x^{2}+2 x-1 \\
& \text { Completing the Square }
\end{aligned}
$$

$$
\begin{array}{l|c}
f(x)=\left(x^{2}+2 x+1\right)-1-1 \text { add a clever form of zero } & \text { Vertex Form } \\
f(x)=(x+1)^{2}-2 & f(x)=a(x-h)^{2}+k \\
\text { UERTEX }(-1,-2) & \\
\text { AXIS OF SYMMETRY : } x=-1 & \text { Axis of symmetry: the line } x=h \\
& \text { Vertex: }(h, k)
\end{array}
$$

Transformations of the parent function

$$
f(x)=x^{2}
$$

TRANSLATIONS or SHIFTS

 Horizontal shift for $\boldsymbol{h}>\mathbf{0}$$$
f(x-h)=(x-h)^{2}
$$

moves RIGHT h units
Ex) $g(x)=(x-3)^{2}$

$f(x+h)=(x+h)^{2}$ moves LEFT h units
Ex) $g(x)=(x+3)^{2}$

Vertical Shift for $\boldsymbol{k}>\boldsymbol{0}$

$f(x)+k=x^{2}+k$
moves UP k units
Ex) $g(x)=x^{2}+3$
$f(x)-k=x^{2}-k$ moves DOWN k units
Ex) $f(x)=x^{2}-3$

Example:

Put the following equation into vertex form, then sketch the graph using transformations.

$$
f(x)=x^{2}-6 x+4
$$

Vertex Form:

$$
f(x)=(x-3)^{2}-5
$$

Right 3 units, down 5 units

Déjà RE-Vu
 Putting it all together

Put the following equation in vertex form, and then sketch the parabola.

$$
\begin{gathered}
h(x)=-2 x^{2}+16 x-29 \\
h(x)=-2(x-4)^{2}+3
\end{gathered}
$$

References:
All images created with TI-Interactive software or TI-83+ calculator
For more information on applications of parabolas, check out the following website:
http://www.pen.k12.va.us/Div/Winchester/jhhs/math/lessons/calc2004/apppara b.html

