

Déjà Vu, It's Algebra 2! Lesson 12 Quadratic Functions: Reflections \& Dilations, Roots, Max \& Mins

REFLECTIONS

of $f(x)=x^{2}$
Reflection across y-axis

$$
f(-x)=(-x)^{2}
$$

Input values exchange
The vertex is a MINIMUM y value of the graph

Reflection across x-axis

$$
-f(x)=-x^{2}
$$

Output values exchange
The vertex is a MAXIMUM y value of the graph

DILATIONS: STRETCHES \& COMPRESSIONS

of $f(x)=x^{2}$
Vertical Dilation for $a>0$
$f(x)=a x^{2}$
If $a>1$
Vertical Stretch
away from x-axis
Ex) $g(x)=2 x^{2}$

If $0<a<1$
Vertical Compression towards x-axis
Ex) $g(x)=\frac{1}{2} x^{2}$

Horizontal Dilation for $\boldsymbol{b}>\mathbf{0}$

$f(b x)=(b x)^{2}$
If $b>1$
Horizontal compression towards y-axis
Ex) $g(x)=(2 x)^{2}$

If $0<b<1$
Horizontal stretch away from y-axis
Ex) $g(x)=\left(\frac{1}{2} x\right)^{2}$

Example:

Sketch the graph of $f(x)=-3 x^{2}$

Vertical stretch by a factor of 3 and an x-axis reflection in either order.

Mathematical "Synonyms"

- x-intercpets of the graph of a parabola
- roots of a quadratic function, $f(x)$
- zeros of a quadratic, $f(x)$
- solutions to the equation $f(x)=0$

These values are generally more difficult to find than the y-intercpets, are much more meaningful, in terms of real-world applications.

Factoring is one way to solve quadratic equations:
Example:
Find the zeros of $f(x)=2 x^{2}+2 x-12$

$$
\begin{aligned}
& f(x)=2\left(x^{2}+x-6\right)=0 \\
& 2(x+3)(x-2)=0 \\
& x=-3,2
\end{aligned}
$$

Example:
Find the roots of the following equation. $g(x)=-3 x^{2}-9 x$

$$
\begin{aligned}
& g(x)=-3 x(x+3)=0 \\
& x=0,-3
\end{aligned}
$$

Example:
Find the x-intercepts of the following equation.
$h(x)=2 x^{2}-8$

$$
\begin{aligned}
& h(x)=2 x^{2}-8=0 \\
& 2 x^{2}=8 \\
& x^{2}=4 \\
& x=-2,2
\end{aligned}
$$

Déjà RE-Vu
 Application

The height and velocity of a ball thrown straight up with an initial velocity of 28 feet per second from an initial height of 4 feet can be modeled by the following respective equations:

$$
\begin{aligned}
& h(t)=-16 t^{2}+28 t+4 \\
& v(t)=-32 t+28
\end{aligned}
$$

a) What is the maximum height of the ball?
b) At what time does the ball reach its maximum height?
c) How long is the ball in the air?
d) What is the velocity of the ball as it hits the ground?

References:

All images created with TI-Interactive software or TI-83+ calculator
For more information on applications of parabolas, check out the following website:
http://www.pen.k12.va.us/Div/Winchester/jhhs/math/lessons/calc2004/apppara b.html

