Lesson 12, page 1 of 8

Quadratic Functions: Reflections & Dilations, Roots, Max & Mins

 $\frac{\text{REFLECTIONS}}{\text{of } f(x) = x^2}$

Reflection across y-axis $f(-x) = (-x)^2$ Input values exchange

Reflection across x-axis

 $-f(x)=-x^2$

Output values exchange

DILATIONS: STRETCHES & COMPRESSIONS

of $f(x) = x^2$

Vertical Dilation for $\alpha > 0$ $f(x) = \alpha x^2$

If a > 1Vertical Stretch away from *x*-axis Ex) $g(x) = 2x^2$

If O < a < 1 Vertical Compression towards *x*-axis

Ex) $g(x) = \frac{1}{2}x^2$

Horizontal Dilation for b > 0 $f(bx) = (bx)^2$

If b > 1Horizontal compression towards y-axis Ex) $g(x) = (2x)^2$

If 0 < b < 1Horizontal stretch away from y-axis Ex) $g(x) = \left(\frac{1}{2}x\right)^2$

Example:

Sketch the graph of $f(x) = -3x^2$

Mathematical "Synonyms"

- *x*-intercpets of the graph of a parabola
- roots of a quadratic function, f(x)
- zeros of a quadratic, f(x)
- solutions to the equation f(x) = 0

These values are generally more difficult to find than the y-intercpets, are much more meaningful, in terms of real-world applications.

Factoring is one way to solve quadratic equations:

Example:

Find the zeros of $f(x) = 2x^2 + 2x - 12$

Example: Find the roots of the following equation. $g(x) = -3x^2 - 9x$

Example: Find the *x*-intercepts of the following equation. $h(x) = 2x^2 - 8$

Déjà RE-Vu Application

The height and velocity of a ball thrown straight up with an initial velocity of 28 feet per second from an initial height of 4 feet can be modeled by the following respective equations:

$$h(t) = -16t^2 + 28t + 4$$

 $v(t) = -32t + 28$

- b) At what time does the ball reach its maximum height?
- c) How long is the ball in the air?
- d) What is the velocity of the ball as it hits the ground?

References:

All images created with TI-Interactive software or TI-83+ calculator

For more information on applications of parabolas, check out the following website:

http://www.pen.k12.va.us/Div/Winchester/jhhs/math/lessons/calc2004/apppara b.html