Déjà Vu, It's Algebra 2! Lesson 13 Complex numbers and Imaginary roots

The Fundamental Theorem of Algebra: If a quadratic equation does not have any real x-intercepts, then it has all imaginary roots.

Example:
$f(x)=x^{2}+1$

We define the square root of negative one to be the imaginary unit, i.

$$
\sqrt{-1}=i
$$

Example:

Find the zeros of $g(x)=9 x^{2}+25$

Simplify:
$-\sqrt{75} \quad \frac{-\sqrt{42}}{\sqrt{-3}}$

$$
5 \sqrt{-32}
$$

Complex Numbers:
The Set of Complex numbers are the largest set of numbers used in mathematics are composed of all combinations of real and imaginary numbers. We use the symbol \mathbb{C} to denote the set.

More precisely, a complex number is one that can be written in the form $a+b i$, where i is the imaginary unit and $a, b \in \mathbb{R}$
a is called the REAL PART
b is called the IMAGINGARY PART
Examples:

-4	$-5 i$	$2-3 i$	$-i \sqrt{5}-7$

Working with complex numbers: Powers of i

$$
i=\sqrt{-1}
$$

$$
i^{0}=1
$$

$$
i^{2}=-1
$$

$$
i^{3}=-i=-\sqrt{-1}
$$

$$
i^{-1}=\frac{1}{i}=\frac{i^{4}}{i}=i^{3}
$$

$$
i^{4}=1
$$

$$
i^{5}=i=\sqrt{-1}
$$

$$
i^{-2}=\frac{1}{i^{2}}=\frac{i^{4}}{i^{2}}=i^{2}=-1
$$

Try this: $i^{\mathbf{2 6 3}}=$

We can also perform arithmetic with complex numbers. Let $u=2+3 i, v=-1+5 i$, and $\bar{u}=2-3 i$ (the conjugate of u)

Simplify. Write each answer in standard complex form, $a+b i$
$\boldsymbol{u}+\boldsymbol{v}=$

$$
-3 v-u=
$$

$U V=$
$u \bar{u}=$

Example:
Find the roots of the following quadratic function. $p(x)=x^{2}+4 x+10$

Notice the two imaginary roots occur in conjugate pairs!

Déjà RE-Vu

Solve the following quadratic equation using each method: factoring, completing the square, using the quadratic formula, and graphically.

$$
2 x^{2}+14 x+24=0
$$

Factoring:

Complete the Square:

Quadratic Formula:

$2 x^{2}+14 x+24=0$
$x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}$

Graphing:

References:

All images TI-83+ calculator

http://faculty.uml.edu/enelson/images/Descartes.jpg
http://miccai.irisa.fr/Program/description/miccaiO4-slides-faugeras/images/Euler.jpeg
http://preuss.ucsd.edu/FacultyWebpages/Lederman/images/Carl_Friedrich_Gauss.jpg
http://www.mathsisfun.com/sets/images/number-sets.gif

