

Déjà Vu, It's Algebra 2! Lesson 14 Polynomials: Addition, Subtraction, \& Multiplication

A polynomial is an expression that consists of adding or subtracting a combination of numbers and variables. The variables have exponents that are non-negative integers.

$$
4 x^{5}-7 x^{3}+\frac{2}{3} x^{2}-\sqrt{3}
$$

The degree of a polynomial is the largest exponent.
The coefficients of a polynomial are numbers in front of the variables.

The leading coefficient is the number in front of the variable with the largest exponent.

We classify polynomials in several ways:
By number of terms

Name	\# of terms	Example
Monomial		$4 x$ or -7 or x^{2}
Binomial		$4 x-1$ or $x^{2}+2$
Trinomial		$x^{2}+2 x-1$
		$4 x^{5}+2 x^{3}-3 x$
Polynomial		$-6 x^{6}+x^{2}+1+8 x^{4}-9 x^{8}$

By degree

Name	degree	Example
Constant		-8
Linear		$-6 x-2$
Quadratic		$3 x^{2}+2 x$
Cubic		x^{3}
Quartic		$-x^{4}-x+1$
Quintic		$6 x^{5}+4 x^{3}+2 x^{2}-x$

When adding or subtracting polynomials, we add like terms (those with the same variables.) We can do this vertically or horizontally.

Example:

If $f(x)=4 x^{3}-2 x^{2}-5 x-4$ and $g(x)=x^{4}+3 x^{2}+x-2$

Find the following . . .
a) $f(x)+g(x)$
b) $g(x)-f(x)$
c) $2 f(x)-3 g(x)$

We can also multiply polynomials.

Example:
$\left(2 x^{2}+2\right)(x-4)$

Let $n(x)=2 x-4$ be the number of magic math pills produced by a company at an average cost of $a(x)=-3 x^{3}-5 x^{2}+x$ dollars per pill, where x is the number of years since 2000. Create a function, $c(x)$, for how much money has been spent on producing these pills as a function of time, x.

When a polynomial is raised to a higher power, we can expand it by a routine, repetitive process. We call this Binomial Expansion.

Example:

Expand $(2 x-1)^{3}$

Déjà RE-Vu

For any binomial of the form $(a+b)^{n}$, we can expand using a more efficient method:

Pascal's Triangle

Expression	Expansion	Triangle coeffs				
$(a+b)^{0}$	1		1			
$(a+b)^{1}$	$a+b$		1	1		
$(a+b)^{2}$	$a^{2}+2 a b+b^{2}$		2	2	1	
$(a+b)^{3}$	$a^{3}+3 a^{2} b+3 a b^{2}+b^{3}$	1	3	3	1	
$(a+b)^{4}$	$a^{4}+4 a^{3} b+6 a^{2} b^{2}+4 a b^{3}+b^{4}$	1	4	6	4	1

Example:

Expand $(x-2)^{4}$

References:

All images Tl-83+ calculator

http://mathforum.org/workshops/usi/pascal/images/pascal.hex2.gif http://www.biografiasyvidas.com/biografia/p/fotos/pascal.jpg
http://go.hrw.com/gopages/ma/alg2_07.html

