Déjà Vu, It's Algebra 2! Lesson 16 Polynomials: Finding Complex \& Irrational Roots

Irrational Conjugate Theorem:
In a polynomial $P(x)$ with rational coefficients, if $a+\sqrt{b}$ is a root, then so is $a-\sqrt{b}$, provided that a is rational and \sqrt{b} is irrational.

Example:
Find the exact value of all roots of
$f(x)=2 x^{3}-9 x^{2}+2$ if $x=\frac{1}{2}$ and $x=2+\sqrt{6}$ are roots. What is its factorization?

Another closely related theorem is the . . .
Complex Conjugate Theorem:
In a polynomial $P(x)$ with real coefficients, if $a+b i$ is a root, then so is a-bi, where a, b are real numbers and i is the imaginary unit.
Example:
Write a polynomial $h(x)$ of lowest degree whose roots are $x=-i+2, x=-\sqrt{3}$, and $x=4$.

Rational Root theorem:

If a polynomial has rational roots,
then they will be of the form $\frac{p}{q}$,
where p is a factor of the
CONSTANT, and q is a factor of the LEADING
COEFFICIENT.
Example:
List the possible rational roots, then find all complex roots of $m(x)=2 x^{4}+3 x^{3}+4 x^{2}+9 x-6$

Déjà RE-Vu

A grain silo is shaped like a cylinder with a cone-shaped top. The cylinder is 30 feet tall. The silo can hold 1152π cubic feet of grain at full capacity. Find the radius, x, of the silo.

References:

All images TI-83+ calculator

http://go.hrw.com/gopages/ma/alg2 07.html http://cres1.lancs.ac.uk/~esasb1/recipes/pics/grain.gif http://www.comunications.it/img/rational.gif

