Déjà Vu, It's Algebra 2! Lesson 18 Inverse and Logarithmic Functions

A function $y=f(x)$ is defined by the ordered pairs listed in the following table.

$f(x)$	x	0	1	5	8
	y	2	5	6	9

$f^{-1}(x)$	x	2	5	6	9
	y	0	1	5	8

$f(x)$	$f^{-1}(x)$
D: $[0,8]$	$\mathrm{D}:[2,9]$
R: $[2,9]$	R: $[0,8]$

Summary regarding inverse functions:

- All x and y values interchange
- The Domain and Range interchange
- The x-axis and y-axis interchange
- Inverse functions are reflections across the line $y=x$
- Because a vertical line becomes a horizontal line when reflected across $y=x$, an inverse will pass

the vertical line
test for functions if and only if the function passes the horizontal line test! Such functions are called one-to-one.
This means not all functions have inverses that are functions!!
- Algebraically, you can find an equation of an inverse by interchanging the x and y values, then resolve for y.

Example:

Find the inverse function $f^{-1}(x)$ for the function $f(x)=3(x-5)$, then verify by graphing.

$y=3(x-5)$ replace $f(x)$ with y
$x=3(y-5)$ interchange x and y
$x=3 y-15$
$3 y=x+15$
$y=\frac{x+15}{3}$
$y=\frac{1}{3} x+5$
$f^{-1}(x)=\frac{1}{3} x+5$
Check algebraically:
$f(4)=-3$
$f^{-1}(-3)=4$

It's easier to graph the function if you expand it into slopeintercept form of a line:
$y=3 x-15$

Example:

Find the inverse of the exponential function $y=10^{x}$.
$x=10^{y}$
We are already algebraically stuck at this point. We have not learned any method for removing the y from the exponent. It's time to learn how to do that!!!!

A Logarithm (or Log for short) is the exponent to which a specified base is raised to obtain a given value.

Example:

Find the value of x in each of the following.
a) $2^{x}=32$

$$
32=2^{5}
$$

So $x=5$
5 is the log, base 2 , of 32
Or
$\log _{2} 32=5$

b) $10^{x}=10,000$

```
10000=104
So }x=
4 is the log, base 10, of 10000
Or
\mp@subsup{\operatorname{log}}{10}{}10,000=4
```

c) $\left(\frac{1}{3}\right)^{x}=\frac{1}{27}$

$$
\frac{1}{27}=\left(\frac{1}{3}\right)^{3}
$$

$$
\text { So } x=3
$$

3 is the log, base $\frac{1}{3}$, of $\frac{1}{27}$ Or $\log _{1 / 3} \frac{1}{27}=3$

Here's a very important Theorem which will allow us to convert between log and exponential equations:

$$
y=b^{x} \Leftrightarrow \log _{b} y=x
$$

$$
b>0, b \neq 1
$$

Log equation	$2^{6}=64$
$\log _{2} 64=6$	$7^{1}=7$
$\log _{7} 7=1$	$3^{0}=1$
$\log _{3} 1=0$	$5^{-2}=\frac{1}{25}=0.04$
$\log _{5} 0.04=-2$	$3^{x}=81$
$\log _{3} 81=x$	$4^{x}=4^{x}$
$\log _{4} 4^{x}=x$	$8^{\log _{8} x}=x$
$\log _{8} x=\log _{8} x$	

Basic properties of logs:

1. $\log _{b} 1=0$
2. $\log _{b} b^{x}=x$
3. $b^{\log _{b} x}=x$

Déjà RE-Vu

Coding a message:

The following message was coded with the following exponential function $f(x)=2^{x}$
[8192; $2 ; 1048576 ; 256][512 ; 524288][64 ; 2097152 ; 16384]$
If x corresponds to a letter in the alphabet, and $f(x)$ is the transformed value, decipher the message.

We must first find the inverse function, which we know will be a function, since exponential functions are one-to-one. We do this by using the conversion theorem to get $f^{-1}(x)=\log _{2} x$. We then plug all the values into this function for x, find the function value, then find what letter that number corresponds to in the alphabet. A table helps organize the information.

\boldsymbol{x}	$f^{-1}(x)=\log _{2} x$	Letter of Alphabet
8192	$\mathbf{1 3}$	M
2	1	A
1048576	20	T
256	$\mathbf{8}$	H
512	9	I
524288	19	\mathbf{S}
64	6	F
2097152	21	\mathbf{U}
16384	14	N

References:

All images Tl-83+ calculator or TI-Interactive Software

http://www.gilwellmississauga.org/upcoming events.html
http://blog.wired.com/photos/uncategorized/smiley face.jpg

