

Lesson 18

Inverse and Logarithmic Functions

A function y = f(x) is defined by the ordered pairs listed in the following table.

<i>f</i> (<i>x</i>)	$f^{-1}(x)$
D: [0,8]	
R : [2,9]	

Summary regarding inverse functions:

- All x and y values interchange
- The Domain and Range interchange
- The x-axis and y-axis interchange
- Inverse functions are reflections across the line
 y = x
- Because a vertical line becomes a horizontal line when reflected across y = x, an inverse will pass

the vertical line test for functions if and only if the function passes the horizontal line test! Such functions are called <u>one-to-one</u>. This means not all functions have inverses that are functions!!

• Algebraically, you can find an equation of an inverse by interchanging the x and y values, then resolve for y.

Example:

Find the inverse function $f^{-1}(x)$ for the function f(x) = 3(x-5), then verify by graphing.

Example:

Find the inverse of the exponential function $y = 10^{x}$.

Lesson 18, page 4 of 7

A Logarithm (or Log for short) is the exponent to which a specified base is raised to obtain a given value.

Example:

Find the value of x in each of the following.

a) $2^{X} = 32$

b) $10^{X} = 10,000$

c)
$$\left(\frac{1}{3}\right)^{x} = \frac{1}{27}$$

Here's a very important Theorem which will allow us to convert between log and exponential equations:

$$y = b^{x} \Leftrightarrow \log_{b} y = x$$

b > 0, *b* ≠ 1

Log equation	Exponential equation	
log ₂ 64 = 6	2 ⁶ = 64	
log ₇ 7 = 1	$7^1 = 7$	
log ₃ 1 = 0	3 ⁰ = 1	
log ₅ 0.04 = -2	$5^{-2} = \frac{1}{25} = 0.04$	
log ₃ 81 = <i>x</i>	3 [×] = 81	
$\log_4 4^{\mathbf{X}} = \mathbf{X}$	$\mathbf{4^{X}=4^{X}}$	
$\log_8 x = \log_8 x$	$8^{\log_8 x} = x$	

Basic properties of logs:

- 1. $\log_b 1 = 0$
- 2. $\log_b b^x = x$
- 3. $b^{\log_{b} x} = x$

Déjà RE-Vu

Decoding/Decrypting a message:

The following message was coded with the following exponential function $f(x) = 2^{x}$

[8192; 2; 1048576; 256][512; 524288][64; 2097152; 16384]

If x corresponds to a letter in the alphabet, and f(x) is the transformed value, decipher the message.

X	$f^{-1}(x) =$	Letter of Alphabet
8192		
2		
1048576		
256		
512		
524288		
64		
2097152		
16384		

References: All images TI-83+ calculator or TI-Interactive Software http://www.gilwellmississauga.org/upcoming_events.html http://blog.wired.com/photos/uncategorized/smiley_face.jpg