## Déjà Vu, It's Algebra 2! Lesson 20 Exponential \& Log Equations

An Exponential Equation is an equation containing one or more expressions that have a variable as an exponent.

We will look at two methods for solving exponential equations:

1. Try to get the bases the same.

$$
\text { If } b^{x}=b^{y}, \text { then } x=y \quad(b>0, b \neq 1)
$$

2. Take the logarithm of each side.

$$
\text { If } a=b, \text { then } \log a=\log b(a>0, b>0)
$$

Example:
Solve:
$9^{8-x}=27^{x-3}$

Example:
Solve:
$5\left(\frac{1}{32}\right)^{2 x-1}=40\left(4^{4-2 x}\right)$

Example:
Solve:
$4^{x-1}=5$

Example: Solve:
$6 e^{-x}=5\left(2^{2 x}\right)$

A logarithmic equation is an equation with a logarithmic expression that contains a variable.

You can solve a logarithmic equation by doing the following:

1. Isolate the logarithm (this may require condensing!!)

$$
\log _{b} x=a
$$

2. Convert it to exponential and solve

$$
\begin{aligned}
& \log _{b} x=a \\
& b^{a}=x
\end{aligned}
$$

3. Check your solutions: (remember, we can only take logs of POSITIVE numbers!!)


Example:
Solve:
$2 \log _{6}(2 x-1)=-2$

Example: Solve:
$\log _{12} x+\log _{12}(x+1)=1$

## Example:

Solve:
$\log _{4} x^{2}=7$

Example: Solve:
$\log _{4} x^{2}=7$

## Déjà RE-Vu

Interesting varieties:
Example:
Solve:
$\log _{2}\left(\log _{3} x\right)=-1$

Example:
Solve:

$$
\ln (x+5)=e^{x-5}
$$

