Déjà Vu, It's Algebra 2!
 Lesson 23 Rational Functions

A rational function is a function that can be expressed as the quotient of two polynomials. We are interested in the graphs of such functions.

Some can be transformations of the parent function

$$
f(x)=\frac{1}{x}, x \neq 0
$$

Vertical Asymptote at $x=0$ Horizontal Asymptote at $y=0$
y-intercepts: none
x-intercepts: none

> Domain: $(-\infty, 0) \cup(0, \infty)$
> Range: $(-\infty, 0) \cup(0, \infty)$

Monotonic Decreasing on
$(-\infty, 0) \cup(0, \infty)$

Transformations of parent functions are HUGELY important. Remember the following form:

$$
f(x)=\frac{a}{(x-c)}+d
$$

$|a|$ is a vertical dilation of $f(x)$. If $a<0$, it is a reflection across the x-axis c is a horizontal shift. The new vertical asymptote is at $x=c$
d is a vertical shift. The new horizontal asymptote is at $y=d$

Example:

Graph $g(x)=\frac{-1}{x+3}-2$. State the domain \& range, and list the asymptotes.

The previous graph contained a discontinuity, a gap or break in the graph that causes you to lift your pencil when sketching it from left to right.

Rational functions have two types of discontinuities:

1) Vertical Asymptote (VA)-a type of infinite discontinuity. It is a value that makes only the denominator zero.
2) Removable Discontinuity (Hole)-a type of point discontinuity. It is a value that makes BOTH the numerator and denominator zero.

Example:

Identify the discontinuities of the following rational function. Verify graphically.
$p(x)=\frac{(x-3)\left(x^{2}+2 x\right)}{x^{2}+x}$

Other important features of rational functions, aside from discontinuities, we wish to find are x-intercepts and horizontal asymptotes (which are NOT discontinuities.)

The x-intercepts are the roots/zeros of the numerator (as long as they are not roots of the denominator as well!)

Example:

Find the x-intercepts of $q(x)=\frac{\left(x^{2}+x-6\right)(x-4)}{x^{2}-4 x}$
First, find the domain, that is, any discontinuity. A value cannot be an x-intercept if it is NOT in the domain of the function. Domain: $\boldsymbol{x} \neq \mathbf{0}$.

Next, factor the numerator and denominator completely:

$$
q(x)=\frac{(x+3)(x-2)(x<4)}{x(x-4)}, x \neq 0,4
$$

The only values that exclusively make the numerator zero are $x=-3,2$. These are the x-intercepts.

Notice the Vertical Asymptote at $x=0$, and the hole at $x=4$. There does not appear to be a horizontal asymptote.

MEMORIZE THE FOLLOWING!!!!!

There are three cases for possible horizontal asymptotes:
olf the degree of the numerator is greater than that of the denominator, there is no Horizontal Asymptote (like the previous two examples.)
o If the degree of the denominator is greater than the numerator, there is a Horizontal Asymptote at $y=0$

- $f(x)=\frac{x-1}{x^{2}}$

olf the degrees of the numerator and denominator are the same, there is a Horizontal Asymptote at $y=$ the quotient of the leading coefficients

$$
-f(x)=\frac{2 x^{2}-2}{x^{2}-4}
$$

Déjà RE-Vu

The high school band is planning a trip to play at a college bowl game. The trip will cost $\$ 500$ per band member plus a $\$ 2000$ deposit for the whole group.
a) Write a function to represent the average cost of the trip per band member.
b) Graph the function. Identify a Relevant domain and range, x - or
 y-intercepts, discontinuities, and horizontal asymptotes.
c) Find the total cost per person if 50 band members attend the bowl game.
a) $c(x)=500+\frac{2000}{x}, x$ is the number of students, $c(x)$ is the average cost per student.

 No intercepts.
c) $c(50)=500+\frac{2000}{50}=500+40=\$ 540 /$ person

[^0]
[^0]: References:
 http://logos.simpleplants.com/Schools-Education/thumbs/Schools-Classroom-Activities-
 Marching_Band_2.gif

