

Déjà Vu, It's Algebra 2!

Lesson 24

Radical Expressions, Functions, & Equations

What is the square root of 25?

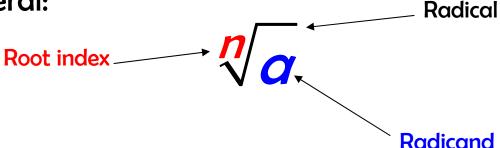
We can write this question using a radical: $\sqrt{25}$

When we ask this question, we really want to answer the following, "What number, times itself, is equal to 25?" The answer is 5, since $5 \cdot 5 = 5^2$

Is there another answer??????? What about -5?

Since
$$(-5)(-5) = (-5)^2 = 25$$
, $\sqrt{25} = \pm 5$

In general:



Example:

$$\sqrt[4]{81} = \sqrt[3]{-125} = \sqrt[6]{-729} = -\sqrt{4^{-1}} = \frac{1}{2}$$
+3 osolution $-\sqrt[1]{4^{-1}} = \frac{1}{2}$

Properties of Radicals:

1.
$$\sqrt[n]{ab} = \sqrt[n]{a} \cdot \sqrt[n]{b}$$
 $\sqrt{36} = \sqrt{4 \cdot 9} = \sqrt{4} \cdot \sqrt{9} = \pm (2 \cdot 3) = \pm 6$

2.
$$\sqrt[n]{\frac{a}{b}} = \frac{\sqrt[n]{a}}{\sqrt[n]{b}}$$
 $\sqrt[3]{\frac{81}{8}} = \frac{\sqrt[3]{81}}{\sqrt[3]{8}} = \frac{3}{2} = 1.5$

Example:

Simplify the following expression: $\sqrt[4]{\frac{16x^8}{5}}$

$$\frac{\sqrt[4]{16} \cdot \sqrt[4]{x^8}}{\sqrt[4]{5}} = \frac{2x^2}{\sqrt[4]{5}} \left(\frac{\sqrt[4]{5}}{\sqrt[4]{5}} \right) \left(\frac{\sqrt[4]{5}}{\sqrt[4]{5}} \right) \left(\frac{\sqrt[4]{5}}{\sqrt[4]{5}} \right) = \frac{2x^2 \sqrt[4]{5^3}}{5} = \frac{2x^2 \sqrt[4]{125}}{5}$$

A <u>rational exponent</u> is an exponent that can be expressed in the form $\frac{m}{n}$, where m and n are integers. Every radical expression can be written equivalently with rational exponents.

$$\sqrt[n]{\boldsymbol{\alpha}^m} = \boldsymbol{\alpha}^{\frac{m}{n}} = \left(\sqrt[n]{\boldsymbol{\alpha}}\right)^m$$

Example:

$$(\sqrt{x})^{3} = \sqrt[4]{16x^{3}} = (-125)^{2/3} =$$

$$x^{3/2}$$

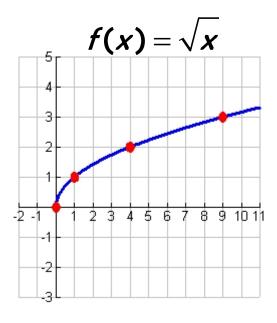
$$(\sqrt[3]{-125})^{2} = (-5)^{2} = 25$$

A Radical Function is a function containing a radical. A square root function contains \sqrt{x}

What does the graph of $f(x) = \sqrt{x}$ look like??

(notice the indicated root is positive)

X	$f(x) = \sqrt{x}$	(x,f(x))
0	$f(0) = \sqrt{0} = 0$	(0,0)
1	$f(1) = \sqrt{1} = 1$	(1,1)
4	$f(4) = \sqrt{4} = 2$	(4,2)
9	$f(9) = \sqrt{9} = 3$	(9,3)
16	$f(16) = \sqrt{16} = 4$	(16,4)



We can graph transformations of this "parent" function of the form

$$g(x) = a\sqrt{b(x-c)} + d$$

Example:

Sketch $g(x) = 1 - 2\sqrt{3 - x}$, the find the domain and range.

$$g(x) = -2\sqrt{-(x-3)} + 1$$
x-axis reflection
vertical stretch by a factor of 2
y-axis reflection
right 3
up one

Domain: $\{x \mid x \le 3\}$
Range: $\{y \mid y \le 1\}$

Déjà RE-Vu

Solve:

$$\sqrt{x+18}=x-2$$

$$(\sqrt{x+18})^2 = (x-2)^2$$

$$x+18 = x^2 - 4x + 4$$

$$x^2 - 5x - 14 = 0$$

$$(x-7)(x+2) = 0$$

$$x = 7 \text{ or } x = -2$$

$$check$$

$$x = 7$$

$$\sqrt{7+18} " = "7-2$$

$$\sqrt{25} " = "5$$

$$5 = 5$$

$$x = 7$$

$$\sqrt{16} " = "-4$$

$$4 \neq 4$$
So only $x = 7$ is a solution

