

Déjà Vu, It's Algebra 2! Lesson 24 Radical Expressions, Functions, \& Equations

What is the square root of 25 ?
We can write this question using a radical: $\sqrt{25}$
When we ask this question, we really want to answer the following, "What number, times itself, is equal to 25?" The answer is 5 , since $5 \cdot 5=5^{2}$

Is there another answer???????? What about -5?
Since $(-5)(-5)=(-5)^{2}=25, \sqrt{25}= \pm 5$
In general:

Example:
$\sqrt[4]{81}=$
$\sqrt[3]{-125}=$
$\sqrt[6]{-729}=\quad-\sqrt{4^{-1}}=$

Properties of Radicals:

1. $\sqrt[n]{a b}=\sqrt[n]{a} \cdot \sqrt[n]{b}$
$2 \cdot \sqrt[n]{\frac{a}{b}}=\frac{\sqrt[n]{a}}{\sqrt[n]{b}}$
Example:
Simplify the following expression: $\sqrt[4]{\frac{16 x^{8}}{5}}$

A rational exponent is an exponent that can be expressed in the form $\frac{m}{n}$, where m and n are integers. Every radical expression can be written equivalently with rational exponents.

$$
\sqrt[n]{a^{m}}=a^{\frac{m}{n}}=(\sqrt[n]{a})^{m}
$$

Example:
$(\sqrt{x})^{3}=$
$\sqrt[4]{16 x^{3}}=$
$(-125)^{2 / 3}=$

A Radical Function is a function containing a radical. A square root function contains \sqrt{x}

What does the graph of $f(x)=\sqrt{x}$ look like??
(notice the indicated root is positive)

x	$f(x)=\sqrt{x}$	$(x, f(x))$
0	$f(0)=\sqrt{0}=0$	$(0,0)$
1	$f(1)=\sqrt{1}=1$	$(1,1)$
4	$f(4)=\sqrt{4}=2$	$(4,2)$
9	$f(9)=\sqrt{9}=3$	$(9,3)$
16	$f(16)=\sqrt{16}=4$	$(16,4)$

We can graph transformations of this "parent" function of the form

$$
g(x)=a \sqrt{b(x-c)}+d
$$

Example:
Sketch $g(x)=1-2 \sqrt{3-x}$, the find the domain and range.

Déjà RE-Vu

Solve:
 $\sqrt{x+18}=x-2$

