

Déjà Vu, It's Algebra 2! Lesson 30
 Conic Sections continued: Hyperbolas

A HYPERBOLA is formed by slicing a doubleknapped cone perpendicular to the base.

Locus Definition of a Hyperbola:

The set of all points whose DIFFERENCE of the distances to two fixed points, called the foci, is a constant.

$$
\left|d_{1}-d_{2}\right|=\text { CONSTANT }
$$

There are two basic varieties of hyperbola graphs:

There are two standard forms of the hyperbola, one for each type shown above. Here is a diagram of the horizontal variety as well as the information we can get from each one.

Hyperbola $\frac{(x-h)^{2}}{a^{2}}-\frac{(y-k)^{2}}{b^{2}}=1$

A hyperbola that opens vertically will be of the form:

$$
\frac{(y-k)^{2}}{a^{2}}-\frac{(x-h)^{2}}{b^{2}}=1
$$

The special relation among the variables a, b, and c is:

$$
c^{2}=a^{2}+b^{2}
$$

Let's try to graph one. . .
Example:

$$
\frac{(x-3)^{2}}{25}-\frac{(y+1)}{49}=1
$$

Example:

Graph $\frac{y^{2}}{9}-(x+2)^{2}=1$

Aside from being able to graph hyperbolas given the equation, it is important to be able to write equations from a graph or given information.

Example:
Find the equation of a hyperbola with center (1,1), vertex $(3,1)$ and focus at $(5,1)$.

Déjà RE-Vu

Reflective Property of a Hyperbola:
Like other conics, a hyperbola can be made into an excellent reflector of sound, light, and other waves.

Long-Range Navigation:
Hyperbolas and radio signals are the basis of the LORAN (long-range navigation) system.

Developed in the US in 1940, LORAN works by comparing time differences between radio transmitters. Radio transmitters are setup in a chain of three or more are separated by hundreds of miles. A chain will have one master transmitter and a series of secondary transmitters. The stations constantly transmit signals with precise timing information.

A LORAN receiver compares the difference

 between the timing signals from the master-secondary transmitters and measures the difference. With this information, your position somewhere on a curved line from the transmitter can be determined. To find out where you are on the curved line, a second signal from another chain is
required. The second chain gives another curved line indicating your position on a curved line.
Where the curved lines intersect from each of the chains is your exact position.

Math is everywhere!

References:
http://www.math.rutgers.edu/courses/251/Lab Backgrounds/lmages/hyperbola cone.gif http://en.wikipedia.org/wiki/lmage:Hyperbool.png
http://go.hrw.com/resources/go mt/alg2/so/a2ch10aso.pdf
http://tutorial.math.lamar.edu/Classes/Alg/Hyperbolas.aspx
http://mathcentral.uregina.ca/beyond/articles/LoranGPS/Loran.html
http://jproc.ca/hyperbolic/decca_lattice.jpg
http://boatsafe.com/kids/navigation.htm
http://www.wemoto.com/wem/pic/ship.gif

