\qquad
\qquad
AP Calculus Test: 3.1-3.5, No Calculator

Part I: Multiple Choice

Use the graph of the function $g(x)$ shown at right to answer

 questions 1-3.\qquad 1. Is $g(x)$ continuous on the interval $(-2.334,-1]$?
(A) Yes
(B) No
(C) I'm not telling!
(D) Don't pick (D)
(E) Who wants to know?
\qquad 2. The smallest value of $a \in \mathbb{R}$ such that $g(x)$ is continuous
 on $[a, 3]$ is
(A) 0
(B) 1
(C) 2
(D) 3
(E) No such value exists
\qquad 3. Find the number $x=b$ such that $g(x)$ is continuous in $(-1, b)$ but not in $[-1, b]$.
(A) -1
(B) 0
(C) $\frac{1}{2}$
(D) 0.999999
(E) 1
\qquad 4. A function $f(x)$ is continuous for all x. The function satisfies

$$
f(1)=10, f(2)=3, f(3)=-5, \text { and } f(4)=-18
$$

The IVT says that the equation
(A) $f(x)=8.675309$ has a solution for some $x \in(1,2)$.
(B) $f(x)=8.675309$ has a solution for some $x \in(2,3)$.
(C) $f(x)=8.675309$ has a solution for some $x \in(3,4)$.
(D) $f(x)=8.675309$ has a solution for some x with $x<-18$.
(E) It cannot be determined from the information whether $f(x)=8.675309$ has a solution.
\qquad

$$
f(x)= \begin{cases}\frac{x^{2}+1}{x-1}, & x<0 \\ 2 x-1, & 0 \leq x \leq 3 \\ \sqrt{x+1}, & x>3\end{cases}
$$

Let $f(x)$ be defined by the piecewise equation above, then $f(x)$ is continuous
(A) for all real numbers
(B) for all $x \neq 0$
(C) for all $x \neq 3$
(D) for all $x \neq 0,3$
(E) for all $x \neq 0,1$, or 3
_6. If $g(x)=\cos x$, then on the interval $\left[\pi, \frac{4 \pi}{3}\right]$, by the IVT, $g(x)$ MUST equal what value for some
$x \in\left(\pi, \frac{4 \pi}{3}\right)$?
(A) 1
(B) -1.5
(C) $\frac{7 \pi}{6}$
(D) -0.6541
(E) IVT does not apply

Part II: Free Response: Answer all questions below the given line. Show all steps, label parts, and write legibly.

1. Let $f(x)= \begin{cases}\frac{1}{x}, & x<1 \\ a x-b, & 1 \leq x<2 \\ 4, & x=2 \\ b x^{2}+a, & x>2\end{cases}$
(a) Find $f(2)$
(b) Find $\lim _{x \rightarrow 2^{-}} f(x)$ as a function of a and b.
(c) Find $\lim _{x \rightarrow 2^{+}} f(x)$ as a function of a and b.
(d) Find all SIMPLIFIED values of a and b that make f continuous at $x=2$. Show the work that leads to your answer.
(e) Does the Intermediate Value Theorem apply to $f(x)$ on the interval $\left[-1, \frac{1}{2}\right]$? Specifically explain why or why not.
(f) Find $\lim _{x \rightarrow-\infty} f(x)$
