\qquad Date \qquad Period \qquad

AP Calculus TEST: 1.1-1.5

No Calculator
Part I: Multiple Choice -write the CAPITAL LETTER in the blank to the left of the problem number.

Use the graph of the function $h(x)$, shown below right, to answer questions 1-3.

\qquad 1. The largest value of $w \in \mathbb{R}$ such that $h(x)$ is continuous on $(-3, w]$ is
(A) 0
(B) -1
(C) -2
(D) -1.1
(E) No such value exists
2. On the interval $-0.5 \leq x \leq 2.5$, the IVT guarantees a value $-0.5<j<2.5$ such that $h(j)=1$. What is j ?
(A) 0
(B) 1
(C) 2
(D) 3
(E) the IVT does not apply

3. $\lim _{x \rightarrow-1^{+}} h(h(x))=$
(A) 0
(B) 1
(C) 2
(D) 3
(E) No such value exists

D
4. The line $y=-7$ is a horizontal asymptote to the graph of which of the following functions?
(A) $y=-\frac{\sin (7 x)}{x}$
(B) $y=\frac{-7 x^{2}+2 x-1}{\sqrt{x^{2}+50}}$
(C) $y=\frac{1}{x+7}$
(D) $y=\frac{21 x^{3}-2 x^{2}-7}{7+9 x-3 x^{3}}$
(E) $y=\frac{-7 x}{1-x}$

$$
\frac{21 x^{3}}{-3 x^{3}} \rightarrow-7=y
$$

5. $\lim _{x \rightarrow 6} \frac{1-\sqrt{x-5}}{x(x-6)} \frac{(1+\sqrt{x-5})}{1+\sqrt{x-5})}$
(A) $-\frac{1}{2}$
(B) $-\frac{1}{12}$
(C) $\frac{1}{2}$
(D) $\frac{1}{12}$
(E) $-\frac{1}{6}$

$$
\begin{aligned}
& \lim _{x \rightarrow 6} \frac{1-(x-5)}{x(x-6)(1+\sqrt{x-5})} \\
& \lim _{x \rightarrow 6} \frac{-x+6}{x(x-6)(1+\sqrt{x-5})} \\
& \lim _{x \rightarrow 6} \frac{-(x-6)}{x(x-6)(1+\sqrt{x-5})}
\end{aligned}
$$

$$
\frac{-1}{6(1+1)}
$$

$$
\frac{-1}{12}
$$

A.
6. $\left.\lim _{x \rightarrow 4} \frac{x-4}{\frac{4}{x}-\frac{3}{x-1}(x(x-1)}\right)$
(A) 12
(B) -12
(C) $-\frac{1}{12}$
(D) $\frac{1}{12}$
(E) ONE
$\sum_{x \rightarrow 4} \frac{x(x-4)(x-1)}{4(x-1)-3 x}$
$\operatorname{lem}_{x \rightarrow 4} \frac{x(x-4)(x-1)}{4 x-4-3 x}$
$\lim _{k \rightarrow 4} \frac{x(x-4)(x-1)}{(x-4)}$
$4(4-1)$
12

$$
f(x)= \begin{cases}\frac{(3 x+1)(x-3)}{2 x-6}, & x \neq 3 \\ k, & x=3\end{cases}
$$

8. Let f be the function defined above. For what value of k is f continuous at $x=3$?
(A) 0
(B) 1
(C) 2
(D) 3
(E) 5

$$
\lim _{x \rightarrow 3} \frac{(3 x+1)(x-3)}{2(x-3)}
$$

B
9. The function f is continuous on $[-10,10]$ and has values given in the table below. If the equation $f(x)=-1$ has at least 2 solutions in the interval $(-10,10)$ if $p=$

x	-10	0	10
$f(x)$	-4	p	-3

(A) $-\frac{3}{2}$
(B) $-\frac{1}{2}$
(C) -1
(D) -2
(E) -5
10

Part II: Free Response: Answer all questions in the space provided.. Show all steps on part (e), and all parts, use proper notation, notation, notation. No Notation, No-No point!!
10. Let $f(x)$ be the totally awesome piece wise function given below.

$$
f(x)= \begin{cases}\frac{3 x^{5}+7 x^{3}-2 x+1}{\sqrt{4 x^{10}+2 x^{4}+11}}, & x \leq-3 \\ a x^{2}+2 b, & -3<x<-1 \\ 5, & x=-1 \\ 3 b x-a, & -1<x<-\frac{1}{2} \\ \frac{3 x^{2}}{\sin (3 x) \tan (5 x)}, & -\frac{1}{2} \leq x<1 \\ \frac{2 x+1}{x-2}, & x \geq 1\end{cases}
$$

(a) Find $\lim _{x \rightarrow-\infty} f(x) \approx \lim _{x \rightarrow-\infty} \frac{3 x^{5}+\cdots}{2 x^{5}}==\frac{-\frac{3}{2}}{2}$
(b) Find $\lim _{x \rightarrow 0} f(x)=\lim _{x \rightarrow 0} \frac{3 x^{2}}{\sin (3 x) \cdot \tan (5 x)}$

$$
\left(\frac{15}{5}\right)(1)(1)=\text { 固 } \sqrt{3}
$$

(c) Find $\lim _{x \rightarrow 2^{+}} f(x) \stackrel{\text { so }}{\substack{\text { DIE } \\<\infty}}$ (44)
(d) Does the IVT apply to $f(x)$ on $[1,3]$? Why or why not? Be specific.

$$
\begin{aligned}
& \text { No, the MVT does not apply, (15 } \\
& \text { since } f(x) \text { is not continuous } \\
& \text { at } x=2 \in[1,3] \text {. }
\end{aligned}
$$

(e) If a and b are constants that make $f(x)$ continuous at $x=-1$, what is the value of a ?

$$
\begin{aligned}
& \lim _{x \rightarrow-1^{-}} f(x)=a+2 b \\
& \lim _{x \rightarrow-1^{+}} f(x)=-3 b-a \\
& f(-1)=5 \\
&\left\{\begin{aligned}
a+2 b & =5 \text { (37) } \\
-a-3 b & =5(\sqrt{8} \\
-b & =10 \\
b & =-10 \\
80 a & =5-2 b \\
a & =5-2(-10) \\
a & =25
\end{aligned} \sqrt{9}\right.
\end{aligned}
$$

