\qquad

AP Calculus TEST: 1.1-1.5—Limits and Continuity. No Calculator

Part I: Multiple Choice -write the CAPITAL LETTER in the blank to the left of the problem number.

Use the graph of the function $f(x)$ shown at right to answer questions 1-2.

1. What's the smallest value of k such that $f(x)$ is continuous on the interval $[k, 3) ? \begin{aligned} & \text { it would the the list real } \\ & \text { number to the right } \\ & \text { of } X=-2, \text { which doesn't }\end{aligned}$
(A) -2
(B) -1
(C) -3
(D) -1.9
(E) No such value exists

2. What's the largest value of b such that $f(x)$ is continuous on $[-7, b]$ but not on $[-7, b+1]$?
(A) -3
(B) -2
(C) 4
(D) 1
(E) No such value exists

3. A function $f(x)$ is continuous for all x. The function satisfies the following:

$$
f(1)=10, f(2)=3, f(3)=-5, \text { and } f(4)=-18
$$

The IVT says that the equation
(A) $f(x)=8.675309$ has a solution for some x with $x<-18$
(B) $f(x)=8.675309$ has a solution for some $x \in(3,4)$.
(C) $f(x)=8.675309$ has a solution for some $x \in(2,3)$.
(D) $f(x)=8.675309$ has a solution for some $x \in(1,2)$.

(E) It cannot be determined from the information whether $f(x)=8.675309$ has a solution.

C 4. $f(x)= \begin{cases}\frac{x^{2}+1}{x-1}, & x<0 \\ 2 x-1, & 0 \leq x \leq 3 \\ \sqrt{x+1}, & x>3\end{cases}$
Let $f(x)$ be defined by the piecewise equation above, then $f(x)$ is continuous
(A) for all real numbers
(B) for all $x \neq 0$
(C) for all $x \neq 3$
(D) for all $x \neq 0,3$
(E) for all $x \neq 0,1$, or 3
E_{5}
5. $\lim _{x \rightarrow 8} \frac{\frac{4}{x}-\frac{1}{2}}{x-8}=\frac{2 x}{2 x}$
(A) DNE
(B) -16
(C) 16
(D) $\frac{1}{16}$
(E) $-\frac{1}{16}$
$\lim _{x \rightarrow 8} \frac{4(2)-(1)(x)}{2 x(x-8)}$
$\lim _{x \rightarrow 8} \frac{-(x-8)}{2 x(x-8)}$
$\frac{-1}{16}$

P
6. Evaluate $\lim _{x \rightarrow 0}\left(\frac{3 \csc 9 x}{2 \csc 3 x}+\frac{x}{x}-\frac{\tan x}{\cos x+1}\right)=$ (A) DNE
(B) 0
(C) $\frac{11}{2}$
(D) $\frac{3}{2}$
(E) 3

$$
\begin{gathered}
\left(\frac{3}{2}\right)\left(\frac{3}{9}\right)+1-\frac{0}{1+1} \\
\frac{9}{18}+1-0 \\
\frac{1}{2}+1 \\
\frac{3}{2}
\end{gathered}
$$

B 7. If $f(x)=\left\{\begin{array}{l}\frac{\sqrt{2 x+5}-\sqrt{x+7}}{x-2}, x \neq 2 \\ k, x=2\end{array}\right.$, find the value of k that makes $f(x)$ continuous at $x=2$.

$$
\begin{aligned}
& \begin{array}{lll}
\begin{array}{ll}
(\mathrm{A}) 0 & \text { (B) } \frac{1}{6} \\
\lim _{x \rightarrow 2} \frac{\sqrt{2 x+5}-\sqrt{x+7}}{x-2} \cdot \frac{\sqrt{2 x+5}+\sqrt{x+7}}{\sqrt{2 x+5}+\sqrt{x+7}} & \text { (D) } 1
\end{array} \quad \text { (E) } \frac{7}{5} \\
\lim _{x \rightarrow 2} \frac{2 x+5-(x+7)}{(x-2)(\sqrt{2 x+5}+\sqrt{x+7})} \\
\lim _{x \rightarrow 2} \frac{(x-2) 1}{(x-2)(\sqrt{2 x+5}+\sqrt{x+7})} \\
\frac{1}{6}
\end{array}
\end{aligned}
$$

A
8. $\lim _{x \rightarrow 2} \frac{x^{3}-x^{2}-3 x+2}{x^{2}-5 x+6} \stackrel{\%}{=}$
(A) -5
(B) 5
(C) ∞
(D) $\frac{1}{3}$
(E) $-\frac{1}{3}$
$\lim _{x \rightarrow 2} \frac{(x)-2)\left(x^{2}+x-1\right)}{(x-2)(x-3)}$

$$
\frac{2^{2}+2-1}{2-3}
$$

$$
\frac{5}{-1}
$$

-5

9. The function $g(x)=\ln \left(x^{2}-1\right)$ is continuous for which values of x ?
(A) $-1<x<1$

$$
\text { (B) }-1 \leq x \leq 1
$$

(C) $x \leq-1$ or $x \geq 1$
(D) $x<-1$ or $x>1$
(E) $x>1$
$x^{2}-1>0$
$(x-1)(x+1)>0$

$x<-1$ or $x>1$

Part II: Free Response: Show all work in the space provided. Be sure to use proper notation, notation, notation. No notation, No no points!!!

Let $f(x)= \begin{cases}\frac{(2+x)^{2}-2(2+x)-15}{x+5}, & x \leq-3 \\ \frac{\tan ^{2} 2 x}{3 x^{2}}, & -3<x \leq \frac{1}{2} \\ 2 x-a, & \frac{1}{2}<x<1 \\ 3, & x=1 \\ b x^{2}+a, & 1<x<2 \\ \sqrt{x+2}, & 7<x \leq 7 \\ \frac{1}{2} x-\frac{1}{2}, & x>8 \\ \frac{-5 x^{5}+2 x^{2}+7 x+14}{\sqrt{25 x^{12}+4 x^{4}+13 x^{2}+11}},\end{cases}$
(a) Find $\lim _{x \rightarrow-5} f(x)$

(b) Find $\lim _{x \rightarrow \infty} f(x)$ $\lim _{x \rightarrow \infty} \frac{-5 x^{5}+2 x^{2}+7 x+14}{\sqrt{25 x^{12}+4 x^{4}+13 x^{2}+11}} \quad \lim _{x \rightarrow \infty} \frac{-5 x^{5}+\cdots}{5 x^{6}+\cdots}$

(c) $\lim _{x \rightarrow 0} f(x)=$
$\varliminf_{x \rightarrow 0} \frac{\tan ^{2} 2 x}{3 x^{2}}$
$\lim _{x \rightarrow 0}\left(\frac{1}{3}\right)\left(\frac{\tan 2 x}{1 x}\right)\left(\frac{\tan 2 x}{1 x}\right)$
$\left(\frac{1}{3}\right)\left(\frac{2}{1}\right)\left(\frac{2}{1}\right)$
$\frac{4}{3} \sqrt{4}$
(d) Find all values of a and b that make f continuous at $x=1$. Show all steps, and use correct notation, notation, notation.
$f(x)= \begin{cases}2 x-a, & \frac{1}{2}<x<1 \\ 3, & x=1 \\ b x^{2}+a, & 1<x<2\end{cases}$
$\lim _{x \rightarrow 1^{-}} f(x)=2-a$
$f(1)=3$
$\lim _{x \rightarrow 1^{+}} f(x)=b+a$
So, $2-a=3$ \& $b+a=3$

$$
\begin{gathered}
-a=1 \\
a=-1 \text { so, }, b-1=3 \\
b=4 \\
\sqrt{6}
\end{gathered}
$$

(e) Does the IVT apply to $f(x)$ on $[7,8]$? Why or why not?

$$
\begin{aligned}
& f(x)= \begin{cases}\sqrt{x+2}, & 2 \leq x \leq 7 \\
\frac{1}{2} x-\frac{1}{2}, & 7<x \leq 8\end{cases} \\
& \begin{array}{rlr}
\lim _{x \rightarrow 7^{+}} f(x) & =\frac{1}{2}(7)-\frac{1}{2} \\
& =\frac{7}{2}-\frac{1}{2} \\
& =\frac{6}{2} \\
& =3
\end{array} \\
& \begin{aligned}
f(7) & =\sqrt{7+2} \\
& =\sqrt{9} \\
& =3
\end{aligned}
\end{aligned}
$$

$$
\begin{aligned}
\lim _{x \rightarrow 7^{+}} f(x) & =\frac{1}{2}(7)-\frac{1}{2} \\
& =\frac{7}{2}-\frac{1}{2} \\
& =\frac{6}{2} \\
& =3
\end{aligned} \quad \begin{aligned}
& \text { since the line } \\
& y=\frac{1}{2} x-\frac{1}{2} \text { is } \\
& \text { continwsis on } \\
& y / 7 \text { B }
\end{aligned}
$$

So, $f(x)$ is continuous at $x=7$ (left endpoint)

$$
x \in(7,0]
$$

$$
\text { * The IVT does apply to } \sqrt{8}
$$

$$
f(x) \text { on }[7,8] \text {, since }
$$

$$
f(x) \text { is continuous on }[7,8] \text {. } 9
$$

