$K E \longrightarrow$ Date $10 / 12 / 2016$ Defunct Technology $5^{\prime \prime}$ Floppy Disc No Calculator

Write the CAPITAL LETTER in the blank to the left of the problem number.
A 1. $\lim _{x \rightarrow 0} \frac{3 x^{2}+5 \cos x-5}{2 x}=$
(A) 0
(B) $\frac{5}{2}$
(C) 5
(D) DNE

C
2. Which of the following gives the derivative of the function $f(x)=x^{2}$ at the point $(2,4)$?
(A) $\lim _{h \rightarrow 0} \frac{(x+2)^{2}-x^{2}}{4}$
(B) $\lim _{x \rightarrow 2} \frac{(2+h)^{2}-2^{2}}{h}$
(C) $\lim _{h \rightarrow 0} \frac{(2+h)^{2}-2^{2}}{h}$
(D) $\lim _{h \rightarrow 0} \frac{(4+h)^{2}-4^{2}}{h}$
(D)
3. If $x^{2}-2 x y+3 y^{2}=8$, then $\frac{d y}{d x}=$
(A) $\frac{8+2 y-2 x}{6 y-2 x}$
(B) $\frac{3 y-x}{y-x}$
(C) $\frac{2 x-2 y}{6 y-2 x}$
(D) $\frac{y-x}{3 y-x}$
C
4. Find k so that $f(x)=\left\{\begin{array}{ll}\frac{x^{2}-16}{x-4}, & x \neq 4 \\ k, & x=4\end{array}\right.$ is continuous for all x.
(A) 0
(B) 16
(C) 8
(D) no such k exists
5. Which of the following is true regarding the asymptotic behavior or the function $f(x)=\frac{1}{\sqrt{x}}+3$, for $x>0$.
(A) HA at $y=3$, VA at $x=0$
(B) HA at $y=0$, VA at $x=3$
(C) HA at $y=0$, VA at $x=0$
(D) HA at $y=3$, VA at $x=3$

6. A particle moving along the x-axis is moving with a velocity $v(t)$ whose graph is given above. For what open intervals is the speed of the particle increasing?
I. $x \in(0,1)$
II. $x \in(1,2)$
III. $x \in(2,3)$
(A) I only
(B) I and II only
(C) I and III only
(D) III only

7. If $f(x)=\left\{\begin{array}{ll}x^{2}+1, & -1 \leq x<1 \\ -x+1, & 1 \leq x<2 \\ -1, & x>2\end{array}\right.$, at which of the following values of x is $f(x)$ not continuous?
I. $x=-1$
II. $x=1$
III. $x=2$
(A) II only
(B) I and II only
(C) I and III only
(D) II and III only

A
8. $\frac{d}{d x}\left[x^{3}(x+4)^{2}\right]=$
(A) $5 x^{4}+32 x^{3}+48 x^{2}$
(B) $5 x^{4}+16 x^{3}+48 x^{2}$
(C) $6 x^{5}+32 x^{3}+48 x^{2}$
(D) $6 x^{5}+16 x^{3}+48 x^{2}$

9. If $f(x)=\cos ^{3}(x+1)$, then $f^{\prime}(\pi)=$
(A) $3 \cos ^{2}(\pi 1)$
(B) $-3 \cos ^{2}(\pi+1) \sin (\pi+1)$
(C) $3 \cos ^{2}(\pi+1) \sin (\pi+1)$
(D) $3 \pi \cos ^{2}(\pi+1)$
10. If $f(x)=\sec x+\csc x$, then $f^{\prime}(x)=$
(A) $\sec ^{2} x+\csc ^{2} x$
(B) $\csc x-\sec x$
(C) $\sec x \tan x+\csc x \cot x$
(D) $\sec x \tan x-\csc x \cot x$
11. In the $x y$-plane, the line $x+y=k$, where k is a constant, is tangent to the graph of $y=x^{2}+3 x+1$. What is the value of k ?
(A) -3
(B) -2
(C) -1
(D) 1

D
12. If $y=\frac{2 x+3}{3 x+2}$, then $\frac{d y}{d x}=$
(A) $\frac{12 x+13}{(3 x+2)^{2}}$
(B) $\frac{12 x-13}{(3 x+2)^{2}}$
(C) $\frac{5}{(3 x+2)^{2}}$
(D) $\frac{-5}{(3 x+2)^{2}}$
13. A particle moves along the y-axis so that at time $t \geq 0$, its position is given by $y(t)=2 t^{3}-21 t^{2}+72 t-53$. At what time, t, is the particle at rest?
(A) $t=3$ only
(B) $t=\frac{7}{2}$ only
(C) $t=3$ and $t=\frac{7}{2}$
(D) $t=3$ and $t=4$
14. The function f is continuous on $[-3,2]$ and has values given in the table below. If the equation $f(x)=2$ has at least 2 solutions in the interval $(-3,2)$ if $k=$

x	-3	0	2
$f(x)$	5	k	3.2

(A) 5
(B) 3.2
(C) 2
(D) -3

$$
f(x)= \begin{cases}a x^{3}-6 x, & x \leq 1 \\ b x^{2}+4, & x>1\end{cases}
$$

15. If the above function $f(x)$ is differentiable for all x, then $a=$?
(A) 1
(B) -14
(C) -24
(D) 26

16. An equation of the normal line to the grah of $y=\sqrt{3 x^{2}+2 x}$ at $(2,4)$ is
(A) $-4 x+y=20$
(B) $4 x+7 y=20$
(C) $-7 x+4 y=2$
(D) $4 x+7 y=36$
17. A calculus book falling on the Planet Xelkji has a height, h, at any time, t, given by $h(t)=t^{3}-6 t^{2}+9 t$. What is the accelleration of the book at time $t=4$?
(A) 9
(B) -9
(C) 12
(D) -12
18. If $f(x)=\sqrt[3]{3 x}$, then $f^{\prime}(\sqrt{3})=$
(A) $\frac{1}{2}$
(B) $\frac{1}{3}$
(C) $\frac{1}{\sqrt{3}}$
(D) $\frac{1}{\sqrt[3]{3}}$

19. If $f(x)=\left(3 x^{2}-4 x-1\right) \tan x$, then $f^{\prime}(0)=$
(A) -1
(B) 0
(C) 1
(D) -4
20. If $f(x)=5-|7 x+21|$ for all x, then the value of the derivative $f^{\prime}(x)$ at $x=-3$ is
(A) -7
(B) 7
(C) 5
(D) DNE
