\qquad Date \qquad
\qquad

AP Calculus TEST: 2.1-2.3, NO CALCULATOR

Part WON: Multiple Choice-Put the correct CAPITAL letter in the space to the left of each question. Attach any scratch work to the back of this test upon completion.
\qquad 1. In the $x y$-plane, the line $2 x-y=1$, where k is a constant, is tangent to the graph of $y=k-x^{2}$. What is the value of k ?
(A) -3
(B) -2
(C) -1
(D) 0
(E) 1
\qquad 2. Which of the following is/are true regarding the function $f(x)=5|x+3|-2$?
I. $f^{\prime}(3)=D N E$
II. $f^{\prime}(-4)=-5$
III. $f(x)$ is continuous for all x
(A) I only
(B) III only
(C) I and III only
(D) I, II, and III
(E) II and III only
$f(x)= \begin{cases}a x^{2}+b x+1 & \text { for } x \leq-1 \\ -3 a x+2 b & \text { for } x>-1\end{cases}$
\qquad 3. Let f be the function defined above, where a and b are constants. If f is differentible at $x=-1$, what is the value of $a+b$?
(A) -2
(B) 5
(C) 0
(D) -3
(E) No such values exist
_4. If $y=2 x(x-5)^{2}$, then $\frac{d y}{d x}=$
(A) $6 x^{2}-40 x+50$
(B) $16 x^{3}-120 x^{2}+200 x$
(C) $6 x^{2}-20 x+50$
(D) $4 x-20$
(E) $6 x^{2}+50$
__ 5. $\lim _{h \rightarrow 0} \frac{6 \cos \left(\frac{\pi}{6}+h\right)-6 \cos \frac{\pi}{6}}{h}=$ (A) 0
(B) -6
(C) 6
(D) -3
(E) 3

\qquad 6. The graph of a function $f(x)$ is given above. The graph of $f(x)$ has a vertical asymptote at $x=-3$, a vertical tangent line at $x=1$, and x-intercepts at $x=-2$ and $x=0$. For what values of x is the function $f(x)$ is not differentiable?
(A) $-3,-1,1$ only
(B) $-3,-1$ only
(C) $-3,1$ only
(D) -3 only
(E) $-1,1$ only

$$
g(x)= \begin{cases}7 x^{2}-2, & x<2 \\ 26, & x=2 \\ 14 x-2, & x>2\end{cases}
$$

\qquad 7. Let g be the function given above. Which of the following statements are true about g ?
I. $\lim _{x \rightarrow 2} g(x)$ exists
II. g is continuous at $x=2$
III. g is differentiable at $x=2$
(A) None
(B) I only
(C) II only
(D) I and II only
(E) I, II, and III
$\lim _{x \rightarrow 0} \frac{\left(3 e^{x}-x\right)-3}{x}$
\qquad 8. The above limit represents $f^{\prime}(c)$, the derivative of some function $f(x)$ at some $x=c$. What are $f(x)$ and $x=c ?$
(A) $f(x)=e^{x}-x, c=3$
(B) $f(x)=3 e^{x}, c=0$
(C) $f(x)=3 e^{x}-x-3, c=0$
$\begin{array}{ll}\text { (D) } f(x)=3 e^{x}-x, c=0 & \text { (E) } f(x)=3 e^{x}-x, c=3\end{array}$
-9. $\frac{d}{d x}\left[\frac{3 x^{3}-2 \sqrt{x}+1}{\sqrt{x}}\right]=$
(A) $\frac{15 \sqrt{x^{3}}}{2}-\frac{\sqrt{x}}{2}$
(B) $\frac{15 \sqrt{x^{3}}}{2}-\frac{1}{2 \sqrt{x^{3}}}$
(C) $\frac{18 \sqrt{x^{5}}-2}{x}$
(D) $3 \sqrt{x^{5}}-2+\frac{1}{\sqrt{x}}$
(E) $18 x^{2}$

Part TOO: Free Response-Do all work below in the space provided.
10. If $f(x)=5-3 x-2 x^{2}+x^{3}$
(a) Let $P(x)=f^{\prime}(x)$. Find $P(x)$ and $P^{\prime}(x)$.
(b) Find $P(2)$ and $P^{\prime}(2)$.
(c) Find the equation of the tangent line, in Taylor Form, of $P(x)$ at $x=2$.
(d) Find the equation of the normal line, in Taylor Form, of $P(x)$ at $x=2$.
(e) The equation of the normal line to $P(x)$ at $x=2$ intersects the graph of $P(x)$ at another x-value. Find this x-value. Show the work that leads to your answer.

