\qquad
\qquad

AP Calculus TEST: 2.1-2.4, NO CALCULATOR

Part Ein: Multiple Choice-Put the correct CAPITAL letter in the space to the left of each question.

1. In the $x y$-planethe line $x+y=k$, where k is a constant, is tangent to the graph for $f(x)=x^{2}+3 x+1$. What is the value of k ?

$$
\begin{aligned}
& \text { (A) }-3 \\
& \text { (B) }-2 \\
& \text { (C) }-1 \\
& \text { (D) } 0 \\
& \text { (E) } 1 \\
& \begin{array}{ll}
y=-x+k \\
y^{\prime}=-1
\end{array} \quad f^{\prime}(x)=2 x+3=x^{2}+3 x+1\left\{\begin{array}{l}
\frac{y \text {-valves }}{-x+k=x^{2}+3 x+1} \\
2+k=4-6+1 \\
k=-3
\end{array}\right\}\left\{\begin{array}{l}
\text { Slopes } \\
-1=2 x+3 \\
-4=2 x \\
x=-2
\end{array}\right. \\
& g(x)= \begin{cases}a x^{2}+b x+2, & \text { for } x \leq 1 \\
\frac{2 b}{x}-a & \text { for } x>1\end{cases}
\end{aligned}
$$

2. Let g be the function defined above, where a and b are constants. If g is differentible at $x=1$, what is the value of a ?
(A) $-\frac{3}{4}$
(B) $\frac{1}{2}$
(C) $\frac{3}{4}$
(D) $-\frac{1}{2}$
(E) No such value exists

$$
\begin{aligned}
& \frac{y \text {-valves }}{a+b+2=2 b-a} \\
& 2 a+2=b
\end{aligned}
$$

$$
g^{\prime}(x)=\left\{\begin{array}{l}
2 a x+b, x \\
\frac{-2 b}{x^{2}}, x \\
\text { Slopes } \\
2 a+b=-2 b \\
2 a=-3 b \\
b=-\frac{2}{3} a
\end{array}\right.
$$

\square 3. If $y=\frac{3 x-4}{5 x+7}$, then $\frac{d y}{d x}=$
(A) $\frac{30 x-1}{(5 x+7)^{2}}$
(B) $\frac{2 x+3}{(5 x+7)^{2}}$
(C) $-\frac{41}{(5 x+7)^{2}}$
(D) $\frac{41}{(5 x+7)^{2}}$
(E) $-\frac{1}{(5 x+7)^{2}}$
$\frac{d y}{d x}=\frac{(5 x+7)(3)-(3 x-4)(5)}{(5 x+7)^{2}}=\frac{15 x+21-15 x+20}{(5 x+7)^{2}}=\frac{41}{(5 x+7)^{2}}$
B
4. $\lim _{h \rightarrow 0} \frac{4 \cos \left(\frac{3 \pi}{2}+h\right)-4 \cos \frac{3 \pi}{2}}{h}=$
(A) -4
(B) 4
(C) 0
(D) -1
(E) DNE

$$
\begin{aligned}
f(x) & =4 \cos \psi \\
f^{\prime}(x) & =-4 \sin x \\
f^{\prime}\left(\frac{3 \pi}{2}\right) & =-4 \sin \frac{3 \pi}{2} \\
& =(-4)(-1) \\
& =4
\end{aligned}
$$

\qquad 5. The graph of a function f is shown above. At which values) of x is f not differentiable?
(A) a
(B) a and b
(C) a and d
(D) b and d
(E) a, b, and d

$$
h(x)=\left\{\begin{array}{ll}
4 x-3, & x \leq 2 \\
\varliminf_{x \rightarrow 2^{-}} h(x)=h(2)=5 \\
\frac{3}{2} x^{2}-2 x+3, & x>2
\end{array}{\underset{x \rightarrow 2}{ }+h(x)=6-4+3=5}_{\lim _{x \rightarrow 2}} \rightarrow\right. \text { continuous }
$$

6. Let g be the function given above. Which of the following statements are true about g ?
I. $\lim _{x \rightarrow 2} h(x)$ exists s
II. h is continuous at $x=2$
III. h is differentiable at $x=2$
$h^{\prime}(x)=\{4, x<2$
(A) None (B) I only
(C) II only
(D) I and II only
(E) I, II, and III

7. Which of the following is the equation of the normal line to the function $f(x)=x^{2}+3 x-5$ at $x=1$?
(A) $5 x-y=-4$
(B) $x-5 y=-4$
(C) $5 x+y=-4$
(D) $x+5 y=-4$

$$
\begin{aligned}
& \text { (E) }-5 x+y=-4 \\
& f(1)=1+3-5 \quad, \quad f^{\prime}(x)=2 x+3 \\
& f(1)=-1 \quad f^{\prime}(1)=5 \\
& p+:(1,-1) \quad m_{N}=-\frac{1}{5} \\
& y=-1-\frac{1}{5}(x-1) \\
& 5 y=5\left(-1-\frac{1}{5}(x-1)\right. \\
& 5 y=-5-x+1 \\
& x+5 y=-4
\end{aligned}
$$

8. If $f(x)=x^{2} \sin (x)-\sqrt{x^{3}}$, then $f^{\prime}(0)=$
(A) -2
(B) -1
(C) 0
(D) 1
(E) 2

$$
\begin{aligned}
f^{\prime}(x) & =2 x \sin x+x^{2} \cos x-\frac{3}{2} x^{1 / 2} \\
f^{\prime}(0) & =0+0-0 \\
& =0
\end{aligned}
$$

B.
9. If $f(x)=x^{3}+k x^{2}+x-3$, and if $f^{\prime}(-2)=17$, then $k=$
(A) -2
(B) -1
(C) 0
(D) 1
(E) 2

$$
\begin{gathered}
f^{\prime}(x)=3 x^{2}+2 k x+1 \\
f^{\prime}(-2)=12-4 k+1=17 \\
-4 k=17-13 \\
-4 k=4 \\
k=-1
\end{gathered}
$$

Part Dos: Free Response-Do all work in the space provided. Show all steps. Use proper notation.
10. If $f(x)=\frac{2}{3} x^{3}+\frac{3}{2} x^{2}-x+5$
(a) Let $Q(x)=f^{\prime}(x)$. Find $Q(x)$ and $Q^{\prime}(x)$.

$$
\begin{aligned}
& Q(x)=2 x^{2}+3 x-1 \\
& Q^{\prime}(x)=4 x+3
\end{aligned}
$$

(b) Find $\lim _{x \rightarrow \infty} \frac{Q^{\prime}(x)}{Q(x)}=\prod_{x \rightarrow \infty} \frac{4 x+3}{2 x^{2}+3 x-1}=\square \sqrt{3}$
(c) Find $Q(-2)$ and $Q^{\prime}(-2)$.

$$
\begin{aligned}
& Q(-2)=8-6-1=1 \\
& Q^{\prime}(-2)=-8+3=-5 \sqrt{5}
\end{aligned}
$$

(d) Find the equation of the tangent line, in Taylor Form, of $Q(x)$ at $x=-2$.

$$
\begin{aligned}
& p+:(-2,1), m=-5 \\
& \underbrace{5(x+2)}_{=10}
\end{aligned}
$$

(e) Find the equation of the normal line, in Taylor Form, of $Q(x)$ at $x=-2$.

$$
\begin{aligned}
& p+:(-2,1), m=\frac{1}{5} \\
& y=1+\frac{1}{5}(x+2)
\end{aligned}
$$

(f) The equation of the normal line to $Q(x)$ at $x=-2$ intersects the graph of $Q(x)$ at another x-value. Find this x-value. Show the work that leads to your answer.

$$
\begin{aligned}
& y=1+\frac{1}{5}(x+2)=2 x^{2}+3 x-1=Q(x) \\
& 5+x+2=10 x^{2}+15 x-5 \quad(x 5 \text { on both sides) } \\
& \quad 10 x^{2}+14 x-12=0 \\
& \begin{array}{l}
x=-2 \text { is asoln } \\
\text { so }(x+2) \text { is } \\
\text { a factor } \rightarrow \\
\\
x=-2 \text { or } x=\frac{6}{10}=\frac{3}{5}
\end{array}
\end{aligned}
$$

