Name \qquad Date \qquad
\qquad

AP Calculus TEST: 2.1-2.4, NO CALCULATOR

Part I: Multiple Choice—Put the correct CAPITAL letter in the space to the left of each question.
_1. If $y=\sec x$, then $\frac{d^{2} y}{d x^{2}}=$
(A) $\sec ^{3} x \tan x$
(B) $\sec x \tan x$
(C) $\sec x\left(2 \sec ^{2} x+1\right)$
(D) $\sec x\left(2 \sec ^{2} x-1\right)$
\qquad 2. If $g(x)=\frac{x+2}{x-2}$, then $g^{\prime}(-2)=$
(A) $-\frac{1}{4}$
(B) -1
(C) 1
(D) $\frac{1}{4}$

3. The function $K(x)$, whose graph is composed of straight line segments is shown above. Which of the following is true for $K(x)$ on the open interval $(-2,3)$?
I. $\lim _{x \rightarrow 0} K(x)$ exists
II. $K(x)$ is differentiable for all $x \in(-2,3)$
III. The derivative of $K(x)$ is positive on the interval $(1,3)$
(A) I only
(B) II only
(C) I and III only
(D) I, II, and III
\qquad 4. If $f(x)=-x^{5}+\frac{1}{x}-\sqrt[3]{x}+\frac{1}{\sqrt{x^{5}}}$, then $f^{\prime}(1)=$
(A) $-\frac{53}{6}$
(B) $-\frac{58}{15}$
(C) $\frac{58}{15}$
(D) $\frac{53}{6}$
\qquad 5. If the line $7 x-4 y=3$ is tangent in the first quadrant to the curve $y=x^{3}+x+c$, then $c=$
(A) $-\frac{1}{2}$
(B) $-\frac{1}{4}$
(C) $\frac{1}{4}$
(D) $\frac{1}{2}$
6. The function $f(x)=x^{4}+3 x^{3}+2 x+4$ must have a zero/root between which of the following values of x ?
(A) -2 and 1
(B) 1 and 2
(C) 2 and 3
(D) 3 and 4

$$
g(x)= \begin{cases}x+2, & x \leq 3 \\ 4 x-7, & x>3\end{cases}
$$

\qquad 7. Let f be the function given above. Which of the following statements are true about g ?
I. $\lim _{x \rightarrow 3} g(x)$ exists
II. g is continuous at $x=3$
III. g is differentiable at $x=3$
(A) None
(B) I only
(C) II only
(D) I and II only
(E) I, II, and III
_ 8. What are all the horizontal asymptotes for the graph of $f(x)=\frac{5 x}{\sqrt{x^{2}+1}}$?
(A) $y=0$ only
(B) $y=5$ only
(C) $y=-5$ only
(D) $y=5$ and $y=-5$
9. $\lim _{h \rightarrow 0} \frac{9\left(\frac{1}{3}(x+h)\right)^{3}-9\left(\frac{1}{3} x\right)^{3}}{h}=$
(A) $\frac{x^{2}}{3}$
(B) 0
(C) $9 x^{2}$
(D) x^{2}

Part II: Free Response—Do all work in the space provided. Show all steps. Use proper notation.
10. If $f(x)=\frac{5}{3} x^{3}+2 x^{2}-3 x+11$
(a) Let $Q(x)=f^{\prime}(x)$. Find $Q(x)$ and $Q^{\prime}(x)$.
(b) Find $\lim _{x \rightarrow \infty} \frac{Q(x)}{\left[Q^{\prime}(x)\right]^{2}}=$
(c) Find $Q(-2)$ and $Q^{\prime}(-2)$.
(d) Find the equation of the tangent line, in Taylor Form, of $Q(x)$ at $x=-2$.
(e) Find the equation of the normal line, in Taylor Form, of $Q(x)$ at $x=-2$.
(f) The equation of the normal line to $Q(x)$ at $x=-2$ intersects the graph of $Q(x)$ at another x-value. Find this x-value. Show the work that leads to your answer.

