\qquad Date \qquad
\qquad
AP Calculus TEST: 2.1-2.4, NO CALCULATOR
Part I: Multiple Choice—Put the correct CAPITAL letter in the space to the left of each question.

\qquad 1. The graph of a function h is shown above. Which of the following could be the graph of h^{\prime}, the derivative of h ?
(A)

(B)

(C)
(E)

\qquad 2. In the $x y$-plane, the line $2 x-y=k$, where k is a constant, is tangent to the graph of $y=\frac{3}{2} x^{2}-4 x+1$. What is the value of k ?
(A) 2
(B) -2
(C) 3
(D) 5
(E) -1

$$
f(x)= \begin{cases}2 c x+d & \text { for } x \leq-1 \\ x^{2}+c x & \text { for } x>-1\end{cases}
$$

\qquad 3. Let f be the function defined above, where c and d are constants. If f is differentible at $x=-1$, what is the value of $c \cdot d$?
(A) 1
(B) 2
(C) 4
(D) 6
(E) 8
_4. If $y=\frac{3 x+2}{2 x+3}$, then $\frac{d y}{d x}=$
(A) $\frac{13}{(2 x+3)^{2}}$
(B) $\frac{-13}{(2 x+3)^{2}}$
(C) $\frac{-1}{(2 x+3)^{2}}$
(D) $\frac{5}{(2 x+3)^{2}}$
(E) $\frac{-5}{(2 x+3)^{2}}$
_5. $\lim _{h \rightarrow 0} \frac{2 \cos \left(\frac{7 \pi}{6}+h\right)-2 \cos \left(\frac{7 \pi}{6}\right)}{h}=$
(A) 1
(B) -1
(C) $\sqrt{3}$
(D) $-\sqrt{3}$
(E) $-\sqrt{2}$

Graph of f
\qquad 6. The graph of a function f is shown above. At which value(s) of x is f not differentiable?

$$
\begin{array}{lll}
\text { I. } x=a & \text { II. } x=b & \text { III. } x=d
\end{array}
$$

(A) I only
(B) I \& II only
(B) II \& III only
(C) I \& III only
(D) I, II, \& III

$$
g(x)= \begin{cases}x+2, & x \leq 3 \\ x^{2}-4, & x>3\end{cases}
$$

\qquad 7. Let f be the function given above. Which of the following statements are true about g ?
I. $\lim _{x \rightarrow 3} g(x)$ exists
II. g is continuous at $x=3$
III. g is differentiable at $x=3$
(A) None
(B) I only
(C) II only
(D) I \& II only
(E) I, II, \& III
\qquad 8. If $f(x)=(x-2) \sin x$, then $f^{\prime}(0)=$
(A) -3
(B) -2
(C) 0
(D) 2
(E) 3
9. If $f(x)=2-4|x+6|$ for all x, then the value of the derivative $f^{\prime}(x)$ at $x=6$ is
(A) -4
(B) 0
(C) 4
(D) 2
(E) ONE

Part II: Free Response-Do all work in the space provided.
10. If $g(x)=\frac{2}{3} x^{3}+\frac{1}{2} x^{2}-x+5$
(a) Let $P(x)=g^{\prime}(x)$. Find $P(x)$ and $P^{\prime}(x)$.
(b) Find $P(1)$ and $P^{\prime}(1)$.
(c) Find the equation of the tangent line, in Taylor Form, of $P(x)$ at $x=1$.
(d) Find the equation of the normal line, in Taylor Form, of $P(x)$ at $x=1$.
(e) The equation of the normal line to $P(x)$ at $x=1$ intersects the graph of $P(x)$ at another x-value. Find this x-value. Show the work that leads to your answer.

