

AP Calculus TAKE HOME TEST: 4.1-4.5 NO CALCULATOR
Part I: SHORT ANSWER (ALL WORK MUST BE SHOWN FOR CREDIT. ANY CORRECT ANSWER IN THE ABSENCE OF SUPPORTING WORK WILL BE COUNTED INCORRECT! GIVE SIMPLIFIED, EXACT ANSWERS!)

1. If $f(x)=\left(3 x^{2}-4 x-1\right) \tan x$, then $f^{\prime}(0)=$

$$
\begin{aligned}
& f^{\prime}(x)=(6 x-4)(\tan x)+\left(3 x^{2}-4 x-1\right)\left(\sec ^{2} x\right) \\
& f^{\prime}(0)=(-4)(\tan 6)+(-1)(\sec 0)^{2} \\
& f^{\prime}(0)=0-1^{2} \\
& f^{\prime}(0)=-1
\end{aligned}
$$

2. If $f(x)=3 x^{1 / 3}(2 x+1)$, find the values of $x$ for which $f$ is differentiable, that is, find the domain of $f^{\prime}(x)$. Be sure to show your computation of $f^{\prime}(x)$ and analysis.

$$
\begin{aligned}
& f^{\prime}(x)=x^{-2 / 3}(2 x+1)+3 x^{1 / 3}(2) \\
& f^{\prime}(x)=\frac{2 x+1}{\sqrt[3]{x^{2}}}+6 \sqrt[3]{x}
\end{aligned}
$$

$D_{f}:\{x \mid x \neq 0\}$, $f$ is
If $f(x)=e+\pi x$, then $f^{\prime}(\sqrt{2})=$

$$
\begin{aligned}
& f^{\prime}(x)=\pi \\
& f^{\prime}(\sqrt{2})=\pi
\end{aligned}
$$

4. The following limit gives $f^{\prime}(c)$ for some function $f(x)$ at some $x=c$. Identify $f(x), x=c$, then find

$$
\begin{array}{ll}
f^{\prime}(x) \text {, and finally } f^{\prime}(c) . & \lim _{h \rightarrow 0} \frac{3 \csc \left(\frac{\pi}{2}+h\right)-3}{h}= \\
f(x)=3 \csc x & f^{\prime}\left(\frac{\pi}{2}\right)=-3(1)(0) \\
f^{\prime}(x)=-3 \csc x \cot x \\
f^{\prime}\left(\frac{\pi}{2}\right)=-3\left(\sec \frac{\pi}{2}\right)\left(\cot \frac{\pi}{2}\right) & f^{\prime}\left(\frac{\pi}{2}\right)=0
\end{array}
$$

$$
\begin{aligned}
& \text { 5. If } f(x)=\sqrt[3]{3 x} \text {, then } f^{\prime}(\sqrt{3})= \\
& \begin{array}{l}
f(x)=\sqrt[3]{3} x^{1 / 3} \\
f^{\prime}(x)=\frac{3 \sqrt{3}}{3} x^{-2 / 3} \\
f^{\prime}(x)=\frac{\sqrt[3]{3}}{3} \cdot \frac{1}{\sqrt[3]{x^{2}}}\left\{\begin{array}{l}
f^{\prime}(\sqrt{3})=\frac{\sqrt[3]{3}}{3} \cdot \frac{1}{\sqrt[3]{\sqrt{3}^{2}}} \\
f^{\prime}(\sqrt{3})=\frac{\sqrt[3]{3}}{3} \cdot \frac{1}{3 \sqrt{3}} \\
f^{\prime}(\sqrt{3})=\frac{1}{3}
\end{array}\right.
\end{array} . \begin{array}{l}
\end{array},
\end{aligned}
$$

6. Let $f(x)=\left\{\begin{array}{ll}c x+d, & x \leq 2 \\ x^{2}-c x, & x>2\end{array}\right.$, where $c$ and $d$ are constants. If $f$ is differentiable at $x=2$, what is the value

$$
\begin{aligned}
& \lim _{x \rightarrow 2^{-}} f(x)=f(2)=2 c+d \\
& \lim _{x \rightarrow 2^{+}} f(x)=4-2 c \\
& \text { so } 2 c+d=4-2 c \\
& f^{\prime}(x)=\left\{\begin{array}{l}
c, x \leq 2 \\
2 x-c, x>2 \\
\lim _{x \rightarrow 2^{-}} f^{\prime}(x)=c \\
\lim _{x \rightarrow 2^{+}} f^{\prime}(x)=4-c \\
\text { so } c=4-c \\
2 c=4 \\
c=2
\end{array}\right. \\
& 4+d=0 \\
& d=-4
\end{aligned} \quad \begin{array}{r}
\text { so } 2(2)+d=4-2(2) \\
4
\end{array} \quad \text { so } c+d=2-4
$$

7. A particle moves along the $x$-axis so that at time $t \geq 0$ its position is given by $x(t)=2 t^{3}-21 t^{2}+72 t-53$. At what time $t$ is the particle at rest?

$$
\begin{aligned}
X^{\prime}(t)=v(t)= & 6 t^{2}-42 t+72=0 \\
& 6\left(t^{2}-7 t+12\right)=0 \\
& 6(t-4)(t-3)=0 \\
& t=4 \mathrm{sec}, t=3 \mathrm{sec}
\end{aligned}
$$

8. If $f(x)=(2 x-1)\left(\frac{x^{2}-2}{5 x-7}\right)$, then $f^{\prime}(0)=$

$$
\begin{aligned}
& f^{\prime}(x)=2\left(\frac{x^{2}-2}{5 x-7}\right)+(2 x-1)\left(\frac{(5 x-7)(2 x)-\left(x^{2}-2\right)(5)}{(5 x-7)^{2}}\right) \\
& f^{\prime}(0)=2\left(\frac{2}{7}\right)+(-1)\left(\frac{-5(-2)}{49}\right) \\
& f^{\prime}(0)=\frac{4}{7}-\frac{10}{49} \\
& f^{\prime}(0)=\frac{18}{49}
\end{aligned}
$$

Part II: FREE RESPONSE (SHOW ALL SET-UPS. INCLUDE UNITS IN ALL ANSWERS. NOTATION, NOTATION, NOTATION. WORK ALL QUESTIONS IN THE SPACE BELOW EACH QUESTION.)
9. A particle moves along a vertical number line and has a position equation for $t \geq 0$ of $y(t)=(3 t-1)(t-3)$ with $y(t)$ measured in feet and $t$ measured in seconds.
(a) What is the initial position of the particle?

$$
\begin{aligned}
& y(t)=(3 t-1)(t-3)=3 t^{2}-10 t+3 \\
& y(0)=3 f t
\end{aligned}
$$

(b) When is the first time the particle is at $y=0$ on the number line?

$$
\begin{array}{r}
y(t)=(3 t-1)(t-3)=0 \\
t=\frac{1}{3}, t=3
\end{array}
$$

$$
\text { so } t=\frac{1}{3} \mathrm{sec}
$$

(c) What is the particle's displacement on the interval from $t=0$ to $t=1$ seconds? Explain what this answer means in terms of the particle's starting position.

$$
\begin{aligned}
& y(t)=(3 t-1)(t-3)=3 t^{2}-10 t+3 \\
& \text { Displacement }=y(1)-y(0)=-4-3=-7 f t
\end{aligned}
$$

From $t=0$ to $t=1$ seconds, the particle
ended up 7 ft BELOW where
he started.
(d) What is the particle's average velocity on the interval from $t=0$ to $t=1$ seconds?

$$
\begin{aligned}
& y(t)=(3 t-1)(t-3)=3 t^{2}-10 t+3 \\
& \begin{aligned}
\text { Avg velocity } & =\frac{y(1)-y(0)}{1-0} \\
& =\frac{-7}{1} \\
& =-7 \mathrm{ft} / \mathrm{sec}
\end{aligned}
\end{aligned}
$$

(e) What is the particle's velocity $t=1$ seconds? Explain what this means in terms of the direction and speed of the particle.

$$
\begin{aligned}
& y(t)=(3 t-1)(t-3)=3 t^{2}-10 t+3 \\
& y^{\prime}(t)=v(t)=3(t-3)+(3 t-1)(1)=6 t-10 \\
& y^{\prime}(1)=-4 f+/ \mathrm{sec}
\end{aligned}
$$

$\overline{\text { At } t}=1 \mathrm{sec}$, the particle is
Moving Down at 4ft per sec and.
(f) What is the particle's acceleration at $t=1$ seconds? Explain what this means in terms of the velocity of the particle.

$$
\begin{aligned}
& y^{\prime \prime}(t)=v^{\prime}(t)=a(t)=6 \\
& a(1)=6 \mathrm{ft} / \sec ^{2}
\end{aligned}
$$

At $t=1$ seconds, the particle's velocity is INCREASING by 6 fuse per second.
(g) At what time does the particle change direction? Justify.

$$
\begin{aligned}
y^{\prime}(t)=v(t)=6 t & -10=0 \\
t & =\frac{10}{6} \\
t & =\frac{5}{3} \text { seconds }
\end{aligned}
$$

The particle changes directions at $t=\frac{5}{3}$ seconds since $V(t)$ changes from negative to positive at $t=\frac{5}{3}$ seconds
(h) At $t=1$ seconds, is the speed of the particle increasing or decreasing? Justify.
Decreasing) since
$\square$

$$
V(1)<0 \text { and } a(1)>0
$$

