$\qquad$ Date $\qquad$ Famous Horse $\qquad$
AP Calculus TEST: 2.1-2.5 NO CALCULATOR

Part I: SHORT ANSWER (ALL WORK MUST BE SHOWN FOR CREDIT. ANY CORRECT ANSWER IN THE ABSENCE OF SUPPORTING WORK WILL BE COUNTED INCORRECT! GIVE SIMPLIFIED, EXACT ANSWERS!)

1. If $f(x)=\left(3 x^{2}-4 x-1\right) \tan x$, then $f^{\prime}(0)=$
2. If $f(x)=3 x^{1 / 3}(2 x+1)$, find the values of $x$ for which $f$ is differentiable, that is, find the domain of $f^{\prime}(x)$. Be sure to show your computation of $f^{\prime}(x)$ and analysis.
3. If $f(x)=e+\pi x$, then $f^{\prime}(\sqrt{2})=$
4. The following limit gives $f^{\prime}(c)$ for some function $f(x)$ at some $x=c$. Identify $f(x), x=c$, then find $f^{\prime}(x)$, and finally $f^{\prime}(c)$.

$$
\lim _{h \rightarrow 0} \frac{3 \csc \left(\frac{\pi}{2}+h\right)-3}{h}=
$$

5. If $f(x)=\sqrt[3]{3 x}$, then $f^{\prime}(\sqrt{3})=$
6. Let $f(x)=\left\{\begin{array}{ll}c x+d, & x \leq 2 \\ x^{2}-c x, & x>2\end{array}\right.$, where $c$ and $d$ are constants. If $f$ is differentiable at $x=2$, what is the value of $c+d$ ?
7. A particle moves along the $x$-axis so that at time $t \geq 0$ its position is given by $x(t)=2 t^{3}-21 t^{2}+72 t-53$. At what time $t$ is the particle at rest?
8. If $f(x)=(2 x-1)\left(\frac{x^{2}-2}{5 x-7}\right)$, then $f^{\prime}(0)=$

Part II: FREE RESPONSE (SHOW ALL SET-UPS. INCLUDE UNITS IN ALL ANSWERS. NOTATION, NOTATION, NOTATION. WORK ALL QUESTIONS IN THE SPACE BELOW EACH QUESTION.)
9. A particle moves along a vertical number line and has a position equation for $t \geq 0$ of $y(t)=(3 t-1)(t-3)$ with $y(t)$ measured in feet and $t$ measured in seconds.
(a) What is the initial position of the particle?
(b) When is the first time the particle is at $y=0$ on the number line?
(c) What is the particle's displacement on the interval from $t=0$ to $t=1$ seconds? Explain what this answer means in terms of the particle's starting position.
(d) What is the particle's average velocity on the interval from $t=0$ to $t=1$ seconds?
(e) What is the particle's velocity $t=1$ seconds? Explain what this means in terms of the direction and speed of the particle.
(f) What is the particle's acceleration at $t=1$ seconds? Explain what this means in terms of the velocity of the particle.
(g) At what time does the particle change direction? Justify.
(h) At $t=1$ seconds, is the speed of the particle increasing or decreasing? Justify.

