Name

Part I: Multiple Choice—Put the correct CAPITAL letter in the space to the left of each question. E 1. If $f(x)=\frac{x^{3}-c^{3}}{x^{3}+c^{3}}$ where c is a constant, then $\underset{\text { so } f^{3}}{f^{\prime}}(x)=$
(A) $\frac{-3 c^{3} x^{2}}{\left(x^{3}+c^{3}\right)}$
(B) $\frac{-3 c^{3} x^{2}}{\left(x^{3}+c^{3}\right)^{2}}$
(C) $\frac{3 c^{3} x^{2}}{\left(x^{3}+c^{3}\right)^{2}}$
(D) $\frac{-6 c^{3} x^{2}}{\left(x^{3}+c^{3}\right)^{2}}$
(E) $\frac{6 c^{3} x^{2}}{\left(x^{3}+c^{3}\right)^{2}}$ $f^{\prime}(x)=\frac{\left(x^{3}+c^{3}\right)\left(3 x^{2}\right)-\left(x^{3}-c^{3}\right)\left(3 x^{2}\right)}{\left(x^{3}+c^{3}\right)^{2}}$
$f^{\prime}(x)=\frac{3 x^{2}\left[x^{3}+c^{3}-x^{3}+c^{3}\right]}{\left(x^{3}+c^{3}\right)^{2}}$
$f^{\prime}(x)=\frac{3 x^{2}\left(c^{3}\right)}{\left(x^{3}+c^{3}\right)^{2}}=\frac{6 c^{3} x^{2}}{\left(x^{3}+c^{3}\right)^{2}}$

x	$f(x)$	$f^{\prime}(x)$	$g(x)$	$g^{\prime}(x)$
1	3	-2	1	13
2	-3	5	5	$-\frac{1}{2}$

The table above gives the values for differentiable functions $f(x)$ and $g(x) \&$ their continuous derivatives at selected values. Use the table to answer questions 2, 3, and 4.

D
2. If $k(x)=f^{2}\left(\frac{x}{2}\right)=$, use the table to find $k^{\prime}(2)$.

$$
\begin{aligned}
& \text { (A) }-12 \\
& K(x)=\left(f\left(\frac{1}{2} x\right)\right)^{2} \quad(\text { B) }-3 \\
& K^{\prime}(x)=\left(f\left(\frac{1}{2} x\right)\right)^{\prime} \cdot f^{\prime}\left(\frac{1}{2} x\right) \cdot \frac{1}{2}
\end{aligned}\left\{\begin{aligned}
k^{\prime}(2) & =f(1) \cdot f^{\prime}(1) \\
& =(3)(-2) \\
& =-6
\end{aligned}\right.
$$

E 3. If $J(x)=\sqrt{2 f(x)+3 g(x)}$, find $J^{\prime}(1)$.
(A) $\frac{315}{2}$
(B) $\sqrt{3}$
(C) 11
(D) $\frac{1}{2 \sqrt{35}}$
(E) $\frac{35}{6}$
$J(x)=(2 f(x)+3 g(x))^{1 / 2}$
$J^{\prime}(x)=\frac{1}{2}(2 f(x)+3 g(x))^{-1 / 2} \cdot\left(2 f^{\prime}(x)+3 g^{\prime}(x)\right)$$\left\{J^{\prime}(1)=\frac{2 \sqrt{35}(-2)+(3)(13)}{2 \sqrt{2(3)+3(1)}=\frac{64+39}{2 \sqrt{9}}=\frac{35}{6}, ~}\right.$
C4. For $1 \leq x \leq 2$, which of the following must be true?

INT QUESTION, D \rightarrow C
I. $g(c)=\frac{7}{2}$ for some $c \in(1,2) \mid<3.5<5$
II. $f(r)=0$ for some r 共 1,2$)-3<0<3$
III. $f(z)=3.0001^{\text {f for some } z \in(1,2)}$
(A) I only
(B) II only
(C) I and II only
(takes on all y-values between endpt. y-valves $3.001 \notin(-3,3)$
$g(1)=1, g(2)=5$
$f(1)=3, \quad f(2)=-3$

$$
\begin{aligned}
& f=\frac{5}{\sqrt{x-3}} \\
& f=5(x-3)^{-1 / 2} \\
& f^{\prime}=-\frac{5}{2}(x-3)^{-3 / 2} \cdot(1 \\
& f^{\prime}=-\frac{5}{2 \sqrt{(x-3)^{3}}}
\end{aligned}
$$

(A) $-\frac{5}{2}$
(B) $\frac{5}{2}$
(C) $-\frac{5}{16}$
(D) $\frac{5}{16}$
(E) DNE

A 6. If $f(x)=\cos x$ and $\frac{2}{y}=f(x)$, find $\left.\frac{d y}{d x}\right|_{x=\frac{5 \pi}{6}}$
(A) $\frac{4}{3}$
(B) $4 \sqrt{3}$
(C) $-4 \sqrt{3}$
(D) $\frac{8}{\sqrt{3}}$

So, $\cos x=\frac{z}{y}$

$$
\begin{aligned}
& y=\frac{2}{\cos x} \\
& y=2 \sec x \\
& \frac{d y}{d x}=2 \sec x \cdot \tan x
\end{aligned}
$$

$$
\begin{aligned}
\left.\frac{d y}{d x}\right|_{x=\frac{5 \pi}{6}} & =2 \sec \frac{5 \pi}{6} \tan \frac{5 \pi}{6} \\
& =2\left(-\frac{2}{\sqrt{3}}\right)\left(-\frac{1}{\sqrt{3}}\right) \\
& =\frac{4}{3}
\end{aligned}
$$

7. If $f(1)=\frac{\pi}{4}$ and $f^{\prime}(1)=3$, find the equation of the tangent line to $h(x)=\cot (f(x))$ at $x=1$.
(A) $6 x+y=7$
(B) $6 x-y=7$
(C) $6 x-y=-7$
(D) $-6 x+y=2$
(E) $6 x-y=7$

$$
\begin{aligned}
& p t:(1,1) \\
& m=-6 \\
& \text { eq: } y=1-6(x-1) \\
& y=1-6 x+6 \\
& 6 x+y=7
\end{aligned}
$$

$$
\begin{aligned}
& h(1)=\cot (f(1)) \\
&=\cot \frac{\pi}{4} \\
&=1
\end{aligned} \quad \begin{aligned}
h^{\prime}(x) & =-\csc ^{2}(f(x)) \cdot f^{\prime}(x) \\
& =-\left[\csc \frac{\pi}{4}\right]^{2} \cdot 3 \\
& =-3\left(\frac{2}{\sqrt{2}}\right)^{2} \\
& =-3\left(\frac{4}{2}\right) \\
& =-6
\end{aligned}
$$

8. $\frac{d^{41}}{d x^{41}}\left[\cos 2 x+\frac{22 x^{30}-42 x^{20}+100 x^{10}-99}{\text { allgoes to zero at }}\right]=$
allgoes to
(B) $2^{41} \cos 2 x$
(C) $-2^{41} \sin 2 x$
(D) $-2^{41} \cos 2 x$
(E) $-82 \sin 2 x$
(A) $2^{41} \sin 2 x 10$

$$
\begin{equation*}
\frac{4 \longdiv { 4 0 }}{\frac{41}{R 1}} \text { so } \frac{d 41}{d x^{41}}=\frac{d}{d x}(\text { Ist deriv) } \tag{0}
\end{equation*}
$$

$$
\begin{aligned}
& y=\cos 2 x \\
& \frac{d y}{d x}=-2^{\prime} \sin 2 x, \text { so, } \frac{d^{41}}{d x^{41}}[\cos 2 x]=-2^{41} \cdot \sin 2 x
\end{aligned}
$$

$$
y=\cos 2 x
$$

A. 9. If $x^{2}+x y+y^{3}=0$, then in terms of x and $y, \frac{d y}{d x}=$

$$
\begin{aligned}
& \begin{array}{l}
\text { (A) }-\frac{2 x+y}{x+3 y^{2}} \\
\frac{d}{d x}\left[x^{2}+x y+y^{3}\right]=\frac{d}{d x}[0] \\
2 x+(1)(y)+(x)\left(\frac{d y}{d x}\right)+3 y^{2}\left(\frac{d y}{d x}\right)=0 \\
\frac{d y}{d x}\left(x+3 y^{2}\right)=-2 x-y
\end{array}, l
\end{aligned}
$$

(C) $\frac{-2 x}{1+3 y^{2}}$
(D) $\frac{-2 x}{x+3 y^{2}}$
(E) $-\frac{2 x+y}{x+3 y^{2}-1}$

Part II: Free Response-Show all set ups, use correct notation, indicate your methods, and answer in complete math/English sentences (with units) when appropriate.
10. A creepy clown is walking along a sidewalk. His velocity, in $\mathrm{ft} / \mathrm{sec}$, is given as a function of time, in seconds, by the graph below for $0 \leq t \leq 6$.

(a) At $t=3.2$ seconds, what is the clown's acceleration? Show the work that leads to your answer and answer with correct units. Write a sentence, with units, describing what your answer means in terms of the clown's velocity.

$$
\begin{align*}
& \text { Nus's velocity. } \tag{1}\\
& v^{\prime}(3.2)=a(3.2)=\frac{1-(-1)}{4-3}=\frac{2}{1}=2 \mathrm{f} / \mathrm{se}{ }^{2} .
\end{align*}
$$

At $t=3.2$ records, the clown's velocity

 is INCREASNG by 2 ft /sec per second.(b) What is the clown's average acceleration for $1 \leq t \leq 4$ seconds. Show the work that leads to your answer. Use proper units.

$$
\begin{aligned}
\text { er. Use proper units. } \\
\begin{aligned}
\text { Avg accel } & =\frac{v(4)-v(1)}{4-1} \sqrt{3} \text { Difference } \\
& =\frac{1-(-1)}{4-1} \text { or } \\
& =\frac{2}{3} f+\sec ^{2}(\sqrt{4}
\end{aligned}
\end{aligned}
$$

(c) At $t=3.2$ seconds, is the speed of the clown increasing or decreasing? Justify.

$$
V(3.2)<0
$$

or Slopes of graph of $v(t)>0$ at $t=3.2$ seconds.
(2) $V(3.2)<0$ and increasing.

(3) The graph of $v(t)$ is approaching the t-ax is at $t=3.2$ seconds So, speed is decreasing.
(d) On the interval $0<t<6$ seconds. How many times does the clown change direction. Explain how you know this.
(va) 4 times, because the graph of $v(t)$ changes from pos to neg twice and neg to pos twice for $0<t<6$ seconds.

units on $(a) \&(b) \sqrt{9}$

