AP Calculus TEST: 2.1-2.7, NO CALCULATOR

Part I: Multiple Choice—Put the correct CAPITAL letter in the space to the left of each question.

_____ 1. If
$$f(x) = \frac{x^3 - c^3}{x^3 + c^3}$$
 where c is a constant, then $f'(x) =$

(A)
$$\frac{-3c^3x^2}{\left(x^3+c^3\right)}$$
 (B) $\frac{-3c^3x^2}{\left(x^3+c^3\right)^2}$ (C) $\frac{3c^3x^2}{\left(x^3+c^3\right)^2}$ (D) $\frac{-6c^3x^2}{\left(x^3+c^3\right)^2}$ (E) $\frac{6c^3x^2}{\left(x^3+c^3\right)^2}$

х	f(x)	f'(x)	g(x)	g'(x)
1	3	-2	1	13
2	-3	5	5	$-\frac{1}{2}$

The table above gives the values for differentiable functions f(x) and g(x) & their continuous derivatives at selected values. Use the table to answer questions 2, 3, and 4.

2. If
$$k(x) = f^2\left(\frac{x}{2}\right) =$$
, use the table to find $k'(2)$.

$$(A) -12$$

$$(B)$$
 -3

$$(C)$$
 3

$$(D) -6$$

_____ 3. If
$$J(x) = \sqrt{2f(x) + 3g(x)}$$
, find $J'(1)$.

(A)
$$\frac{315}{2}$$
 (B) $\sqrt{3}$ (C) 11

(B)
$$\sqrt{3}$$

(D)
$$\frac{1}{2\sqrt{35}}$$
 (E) $\frac{35}{6}$

(E)
$$\frac{35}{6}$$

4. For $1 \le x \le 2$, which of the following must be true?

I.
$$g(c) = \frac{7}{2}$$
 for some $c \in (1,2)$

II.
$$f(r) = 0$$
 for some $r \in (1,2)$

III.
$$f(z) = 3.0001$$
 for some $z \in (1,2)$

$$\underline{\qquad} 5. \lim_{h \to 0} \frac{\frac{5}{\sqrt{(7+h)-3}} - \frac{5}{\sqrt{7-3}}}{h} = \frac{5}{\sqrt{1-3}}$$

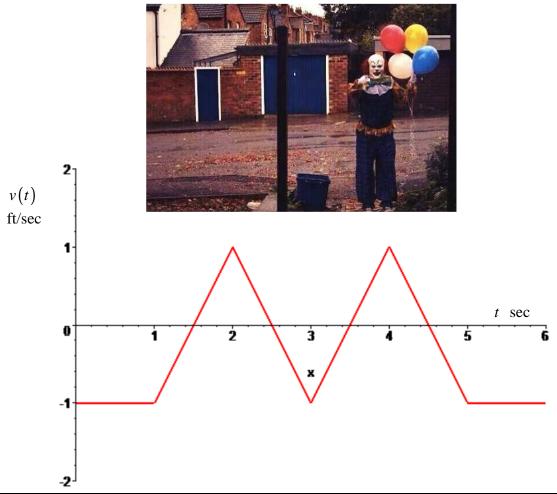
- (A) $-\frac{5}{2}$ (B) $\frac{5}{2}$ (C) $-\frac{5}{16}$ (D) $\frac{5}{16}$ (E) DNE

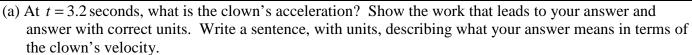
_____6. If
$$f(x) = \cos x$$
 and $\frac{2}{y} = f(x)$, find $\frac{dy}{dx}\Big|_{x=\frac{5\pi}{6}}$

- (A) $\frac{4}{3}$ (B) $4\sqrt{3}$ (C) $-4\sqrt{3}$ (D) $\frac{8}{\sqrt{3}}$ (E) $\frac{-8}{\sqrt{3}}$

_____ 7. If $f(1) = \frac{\pi}{4}$ and f'(1) = 3, find the equation of the tangent line to $h(x) = \cot(f(x))$ at x = 1.

- (A) 6x + y = 7 (B) 6x y = 7 (C) 6x y = -7 (D) -6x + y = 2 (E) 6x y = 7


- (A) $2^{41} \sin 2x$ (B) $2^{41} \cos 2x$ (C) $-2^{41} \sin 2x$ (D) $-2^{41} \cos 2x$ (E) $-82 \sin 2x$


9. If $x^2 + xy + y^3 = 0$, then in terms of x and y, $\frac{dy}{dx} = 0$

- (A) $-\frac{2x+y}{x+3y^2}$ (B) $-\frac{x+3y^2}{2x+y}$ (C) $\frac{-2x}{1+3y^2}$ (D) $\frac{-2x}{x+3y^2}$ (E) $-\frac{2x+y}{x+3y^2-1}$

Part II: Free Response—Show all set ups, use correct notation, indicate your methods, and answer in complete math/English sentences (with units) when appropriate.

10. A creepy clown is walking along a sidewalk. His velocity, in ft/sec, is given as a function of time, in seconds, by the graph below for $0 \le t \le 6$.

(b) What is the clown's average acceleration for $1 \le t \le 4$ seconds. Show the work that leads to your				
answer. Use proper units.				
(c) At $t = 3.2$ seconds, is the speed of the clown increasing or decreasing? Justify.				
(c) It $t = 3.2$ seconds, is the speed of the clown increasing of decreasing. Sustify.				
(d) On the interval $0 < t < 6$ seconds. How many times does the clown change direction. Explain how you				
know this.				