\qquad Date \qquad
\qquad

AB Calculus Test: 3.1-3.5 No Calculator

Part I: Multiple Choice-Put the CAPITAL letter in the space to the left of each question number.

Use the graph above for questions $1-4$. Let k be a function that is differentiable on the interval $[-1,6]$. The graph of the continuous function $k^{\prime}(x)$, the derivative of k, is given above. The graph of $k^{\prime}(x)$ has x-intercepts at $x=0, x=2, x=3$, and $x=6$.
\qquad 1. At what value of x can the absolute maximum of k occur?
(A) -1
(B) 3
(C) 4
(D) 5
(E) 6
\qquad 2. How many local extrema does the graph of k have on the interval $[-1,6]$?
(A) 0
(B) 1
(C) 2
(D) 3
(E) 4
\qquad 3. How many inflection values does the graph of k have on the interval $[-1,6]$?
(A) 0
(B) 1
(C) 2
(D) 3
(E) 4
\qquad 4. How many values of x satisfy the Mean Value Theorem for the function $k^{\prime}(x)$ on the interval $[-1,6]$?
(A) 0
(B) 1
(C) 2
(D) 3
(E) 4
\qquad 5. If $f(x)$ is a differentiable function such that $f(10)=29$ and $f^{\prime}(x) \leq 3$ for all x, what is the smallest possible value of $f(-1)$?
(A) 62
(B) 33
(C) 3
(D) -4
(E) -33
6. Use the EVT to find the range of the function $f(x)=2 x^{3}+3 x^{2}-12 x-1$ on the interval $-1 \leq x \leq 2$.
(A) $y \in[-8,12]$
(B) $y \in[-8,3]$
(C) $y \in[3,12]$
(D) $y \in[-8,19]$
(E) $y \in[3,19]$
7. If $M^{\prime}(x)=x^{2}(x-4)^{3}(2 x+1)^{-4 / 3}$ for some continuous function M, then M has which of the following?
I. Local minimum at $x=0$
II. Local maximum at $x=-\frac{1}{2}$
III. Local minimum at $x=4$
(A) I only
(B) II only
(C) III only
(D) I and II only
(E) I, II, and III

8. The function f is shown above with dots corresponding to the marked locations, C, A, M, P, B, E, and L. Of the following, which has the LARGEST value?
(A) $f^{\prime}(C)$
(B) $f^{\prime \prime}(B)$
(C) $f^{\prime}(M)$
(D) $f^{\prime \prime}(L)$
(E) $f(A)$

\qquad 9. The figure above shows the graph of f^{\prime}, the derivative of the function f. If $f(0)=0$, which of the following could be the graph of f ?
(A)

(C)

(D)

(E)

\qquad 10. Selected information is given below about a continuous function $f(x)$ that is continuous for all real numbers.

	$x<-2$	$x=-2$	$-2<x<1$	$x=1$
$f(x)$	positive	3	negative	0
$f^{\prime}(x)$	positive	0	negative	-4
$f^{\prime \prime}(x)$	positive	42	negative	0

Which of the following must be true about the function $f(x)$
I. $f(x)$ has a local minimum of 3
II. $f(x)$ has a local maximum at -2
III. $f(x)$ has an inflection value at 1
(A) I only
(B) II only
(C) II and III only
(D) I and II only
(E) I, II, and III

Part II: AB Free Response-Show all work in the space provided. Use proper notation (always).
Suppose f is a function given by $f(x)=6 x^{2 / 3}-3 x^{4 / 3}$,
(a) Show that $f^{\prime}(x)=\frac{4\left(1-\sqrt[3]{x^{2}}\right)}{\sqrt[3]{x}}$.
(b) Determine the x-coordinates of any local max/ local mins of $f(x)$? Justify your answer using the $1^{\text {st }}$ Derivative Test.
(c) Determine the intervals on which $f(x)$ is concave down. Justify.

