Name \qquad Date Friday, $1 / 22 / 2016$ Period $\frac{19 \text { points }}{\text { TOTAL }}$

AB Calculus Test: 3.1-3.5 No Calculator

Part I: Multiple Choice

 graph of the continuous function g^{\prime}, the derivative of g, is given above.

1. At what value of x can the absolute minimum of g occur?
(A) -1
(B) 3
(C) 4
(D) 5
(E) 6

2. How many local extrema does the graph of g have on the interval $[-1,6]$?
(A) 0
(B) 1
(C) 2
(D) 3
(E) 4

3. How many inflection values does the graph of g have on the interval $[-1,6]$?
(A) 0
(B) 1
(C) 2
(D) 3
(E) 4
D
4. How many values of x satisfy the Mean Value Theorem for the function $g^{\prime}(x)$ on the interval [-1,6]? (Blue lines on graph)
(A) 0
(B) 1
(C) 2
(D) 3
(E) 4

B
5. If $f(x)$ is a differentiable function such that $f(11)=19$ and $f^{\prime}(x) \leq 2$ for all x, what is the smallest possible value of $f(-1)$?

$$
\begin{aligned}
& \text { by } \\
& \text { MUT, } \\
& f^{\prime}(x)=\frac{\text { (A) } 43}{} \frac{f(11)-f(-1)}{11-(-1)} \leq 2\left\{\frac{19-f(-1)}{12} \leq 2\left\{\begin{array}{c}
\text { (B) } 17 \\
19-f(-1) \leq 24 \\
-f(-1) \leq 5 \\
f(-1) \geq-5
\end{array}\right.\right.
\end{aligned}
$$ 6. Use the EVT to find the range of the function $f(x)=\frac{4}{x}+2 x^{2}$ on the interval $\frac{1}{2} \leq x \leq \frac{3}{2}$.

(A) $6 \leq f(x) \leq \frac{43}{6}$
(B) $6 \leq f(x) \leq \frac{17}{2}$
(C) $\frac{5}{2} \leq f(x) \leq \frac{21}{2}$
(D) $6 \leq f(x) \leq \frac{21}{2}$
(E) $\frac{5}{2} \leq f(x) \leq \frac{43}{6}$
$f^{\prime}(x)=-\frac{4}{x^{2}}+4 x \quad f^{\prime}(x)=\frac{4\left(x^{3}-1\right)^{2}}{x^{2}}$
$\left\{\begin{array}{l}f\left(\frac{1}{2}\right)=8+\frac{1}{2}=\frac{17}{2}=8 \frac{1}{2} \text { MAX } \\ f(1)=4+2=6\end{array}\right\rangle$ So Range $f^{\prime}(x)=\frac{-4+4 x^{3}}{x^{2}} \quad \begin{aligned} & f^{\prime}(x)=0 \\ & \text { at } x=1 \text { cv on on interval }\end{aligned}$

$$
\left\{\begin{array}{l}
f(1)=4+2=6 \\
f\left(\frac{3}{2}\right)=\frac{8}{3}+\frac{9}{2}=\frac{16+27}{6}=\frac{43}{6}=7 \frac{1}{6}
\end{array}\right\} \text { is } y \in\left[6, \frac{17}{2}\right]
$$

A 7. If $f^{\prime}(x)=\left[x(x+5)^{4}(3 x-1)^{-3 / 5}\right]^{3}$ for some continuous function f, then f has which of the following? $f^{\prime}=0$

$$
\text { at } x=0,-5, \frac{1}{3} \rightarrow \text { c.v.s }
$$

I. Local maximum at $x=0$

II. Local maximum at $x=-\frac{1}{3}$
III. Local minimum at $x=-5$
(A) I only
(B) II only
(C) III only
(D) I and II only
(E) I, II, and III

8. The function f is shown above with marked locations, b, o, w, i, and e. Of the following, which has the smallest value?
(A) $f^{\prime}(b)$
(B) $f^{\prime \prime \prime}(o)$
(C) $f^{\prime \prime}(w)$
(D) $f^{\prime}(i)$
(E) $f^{\prime \prime}(e)$
$>$
0
(pos slope)
$<$
0
(ccdwn)
$=$
(inflection pt.)

7
$(c c$ up)
B
9. The figure above shows the graph of f^{\prime}, the derivative of the function f. If $f(0)=0$, which of the following could be the graph of f ?
(A)

(D)
(B)

(C)

(E)

10. Selected information is given below about a continuous function $f(x)$ that is continuous for all real numbers.

	$x<0$	$x=0$ C.V.	$0<x<2$	$x=2$ CV.
$f(x)$	negative	0	positive	4
$f^{\prime}(x)$	positive	DNE	negative	0
$f^{\prime \prime}(x)$	negative	DNE	negative	-3

Which of the following must be true about the function $f(x)$ 1. $f(x)$ has a local maximum of $4, f^{\prime \prime}(2)=-3<0$ \square Local Max of 4 at $x=2$ by
VI. $f(x)$ has a local maximum at $0 f^{\prime}$ changes from pos to 2 at $x=2$ Deriv Test.
II. n neg at $x=0 \& f^{\prime}(0)=D N E$ while $f^{\prime}(0)$ is defined

(A) I only
(B) II only
(C) II and III only (D) I and II only
(E) I, II, and III \rightarrow No, $f^{\prime \prime}(2)=-3 \neq 0$

Part II: AB Free Response:

Suppose f is a function given by $f(x)=-x^{1 / 3}-x^{2 / 3}$,
(a) Show that $f^{\prime}(x)=\frac{1+2 x^{1 / 3}}{-3 x^{2 / 3}}$.

$$
f(x)=-x^{1 / 3}-x^{2 / 3}
$$

$$
f^{\prime}(x)=-\frac{1}{3} x^{-2 / 3}-\frac{2}{3} x^{-1 / 3}(\sqrt{1})
$$

$$
f^{\prime}(x)=-\frac{1}{3} x^{-2 / 3}\left[1+2 x^{1 / 3}\right]
$$

$$
f^{\prime}(x)=\frac{1+2 x^{1 / 3}}{-3 x^{2 / 3}} \sqrt{2}
$$

$$
=\frac{1+2 \sqrt[3]{x}}{-3(\sqrt[3]{x})^{2}}
$$

(b) Determine the x-coordinates of any local extrema of $f(x)$? Justify your answer using the $1^{\text {st }}$

Derivative Test.

(c) Determine the intervals on which $f(x)$ is concave up.
$\begin{aligned} f^{\prime}(x) & =-\frac{1}{3} x^{-2 / 3}-\frac{2}{3} x^{-1 / 3} \\ f^{\prime \prime}(x) & =2 x^{-5 / 3}+\frac{2}{9} x^{-4 / 3}\end{aligned}$ $f^{\prime \prime}(x)=\frac{2}{9} x^{-5 / 3}\left[1+x^{1 / 3}\right]$
$f^{\prime \prime}(x)=\frac{2\left(1+x^{1 / 3)}\right.}{9 x^{5 / 3}}$
$f^{\prime \prime}(x)=\frac{2(1+\sqrt[3]{x})}{9(\sqrt[3]{x})^{5}}$
$f^{\prime \prime}=D N \in \quad f^{\prime \prime}=0$
$\begin{array}{ll}x=0 & 2(1+\sqrt[3]{x})=0 \\ \text { p.i.v. } & \sqrt[3]{x}=-1\end{array}$

$$
\begin{gathered}
\sqrt[3]{x}=-1 \\
x=-1 \\
\frac{p .1 . v .}{}
\end{gathered}
$$

$$
\begin{aligned}
& \text { *Eth check can also be earned } \\
& \text { using the Quotient Rule. } \\
& f^{\prime}(x)=\frac{1+2 x^{1 / 3}}{-3 x^{3 / 3}} \\
& f^{\prime \prime}=\frac{\left(-3 x^{3 / 3}\right)\left(3 x^{-3 / 3}\right)-\left(1+2 x^{3}(3)-2 x^{-1 / 3}\right)}{94^{3 / 3}}
\end{aligned}
$$

