\qquad Date \qquad

Part I: Multiple Choice—Put the CAPITAL letter of the correct response in the blank

Secant line is parallet to tangentline on (A, I)
Question 4: MUT
The graph of the function $y=f(x)$ is shown above. Use the graph to answer questions $1-5$.
*Assume all CAPITAL letters represent the x-values of the indicated points.

1. On the interval (F, G), which of the following is true?
I. $f(x)<0 \checkmark$
II. $f^{\prime}(x)>0 \checkmark$
III. $f^{\prime \prime}(x)<0$

(A) I only
(B) I and II only
(C) I and III only
(D) I, II, and III
2. How many critical values does $y=f(x)$ have on the interval shown?
$C V: f^{\prime}=$ DNA $\begin{array}{cc}d \\ d & \text { or } \\ 0 & f^{\prime}=0(A) 2 \\ & 4 \text { at } x=C\end{array}$
(B) 3
(C) 4
(D) 5
Q
3. How many inflection values does $y=f(x)$ have on the interval shown?

$$
\begin{aligned}
& \text { concave up to down (A) } 1 \\
& \text { or } \\
& \text { cone (B) } 2
\end{aligned} \text { (C) } 3 \text { down to up } \begin{aligned}
& \text { (D) } 4 \\
& 3 \text {, at } x=D, F, H
\end{aligned}
$$

4. How many values satisfy the MVT for $y=f(x)$ on the interval $[A, I]$?
(A) 0
(B) 1
(C) 2
(D) 3
3, at the points with the small, pink tangent lines
5. Which of the following inequalities is correct?
(A) $f(B)<f^{\prime}(B)<f^{\prime \prime}(B)$
(B) $f^{\prime}(B)<f(B)<f^{\prime \prime}(B)$
(C) $f^{\prime \prime}(B)<f^{\prime}(B)<f(B)$
(D) $f^{\prime \prime}(B)<f(B)<f^{\prime}(B)$

$$
\begin{aligned}
& f(B)=O(x \text {-int }) \\
& f^{\prime}(B)>O \text { (increasing) } \\
& f^{\prime \prime}(B)<0 \text { (concave down) } \\
& \text { So, } n e g<0<\text { pos } \rightarrow f^{\prime \prime}(B)<f(B)<f^{\prime}(B)
\end{aligned}
$$

6. A function $y=f(x)$ has the properties that $\widetilde{f^{\prime}(a)=0}$ and $f^{\prime \prime}(a)=0$. Which one of the following statements must be true? for $f l l l(x)$ at all $x=a$
$\sqrt{(A)}$ The graph of $y=f(x)$ has a horizontal tangent at $(a, f(a))$.
(B) $(a, f(a))$ is a coin

Not always

Never
(D) f may be discontinuous at $x=a$. if $f^{\prime}(a)=0$, is differentiable
at $x=0$, 80 it is also continuous at $x=a$
ONLY (A) is Always true!
ONLY (A) is Always true!
7. Given any given function $y=f(x)$, how many of the following statements must be true?

Never). If $f^{\prime \prime}(a)<0$, then the graph of $y=f(x)$ is concave up at $x=a ., N_{0}, f^{\prime \prime}<0$ means concave down. Never II. If $f^{\prime}(a)=0$ and $f^{\prime \prime}(a)>0$, then $f(a)$ is a local max. False, by Ind Darin test

CCu at a cv \cup meanslocalM.N.
Not alwaysíN. If $f^{\prime}(a)=D N E$ and $f^{\prime}(x)$ changes from neg to pos at $x=a$, then $f(a)$ is a local min.
(A) 0
(B) 1
(C) 2
(D) 3 False $f(a)$ could be DNE (NA®X=a)

C

8. The function $y=f(x)$ is twice differentiable with $f(3)=-2, f^{\prime}(3)=\frac{1}{2}$, and $f^{\prime \prime}(3)=\begin{gathered}x=a \\ 1\end{gathered}$. What is the value of the approximation of $f(4)$ using the line tangent to the graph of $y=f(x)$ at $x=3$?
(A) -1.9
(B) -1.7
(C) -1.5
(D) -1.3

$$
p t:(3,-2)
$$

$$
\begin{aligned}
\text { slope: } & \frac{1}{2} \\
\mathcal{L}(x)= & -2+\frac{1}{2}(x-3) \\
f(4) \approx \mathcal{L}(4) & =-2+\frac{1}{2}(4-3) \\
& =-2+\frac{1}{2} \\
= & -\frac{4}{2}+\frac{1}{2} \\
= & -\frac{3}{2}=-1.5
\end{aligned}
$$

9. Given L feet of fencing, what is the maximum number of square feet that can be enclosed if the fencing is used to make three sides of a rectangular pen, using an existing wall as the fourth side?
(A) $\frac{L^{2}}{4}$
(B) $\frac{L^{2}}{8}$
(C) $\frac{L^{2}}{9}$
(D) $\frac{L^{2}}{16}$

Part II: Free Response -Do the work in the space provided. Use proper notation. f is continuous $\forall x \in \mathbb{R}$
10. (1981 AB3) Let f be the function defined by $f(x)=12 x^{2 / 3}-4 x=12 \sqrt[3]{x^{2}}-4 x \quad D_{f}: R$
(a) Find the intervals on which f is increasing.

$$
\begin{aligned}
& f(x)=12 x^{2 / 3}-4 x \\
& \text { (v) } f^{\prime}(x)=8 x^{-1 / 3}-4 \\
& =\frac{8}{\sqrt[3]{x}}-4 \\
& =\frac{8}{\sqrt[3]{x}}-\frac{\sqrt[4]{x}}{\sqrt[3]{x}} \\
& =\frac{8-4 \sqrt[3]{x}}{\sqrt[3]{x}} \\
& f^{\prime}(x)=\frac{4(2-\sqrt[3]{x})}{\sqrt[3]{x}} \\
& f^{\prime}(x)=D N E \\
& f^{\prime}(x)=0 \\
& \begin{array}{ll}
f(x)=\text { oNE } & f(x)=0 \\
\text { stat } x=0 & \sqrt[3]{x}=0 \\
\text { sort }+x=8 & \sqrt[3]{x})=0
\end{array}
\end{aligned}
$$

$\begin{aligned} & f \text { is increasing on } x \in(0,8) \\
& \text { (since on this interval, } f^{\prime}(x)>0 \text {) }\end{aligned}$

	$\sqrt[3]{x}$			
Number Line	Char for $f^{\prime}(x)$			
x	-1	0	8	27
$f^{\prime}(x)$	-	+	-	

f is increasing on $x \in(0,8) \sqrt{3}$
(2 Both numbers
(b) Find the x - and y-coordinates of all relative maximum points. Justify.

$f^{\prime}(x)$
(No discons of f)
to peat inchart
to put inchart 1 chose perfect cubes
on the interval based on $f^{\prime}(x)$

$$
f^{\prime}(x)=\frac{4(2-\sqrt[3]{x})}{\sqrt[3]{x}}
$$

$$
f^{\prime}(-1)<0
$$

$$
f^{\prime}(1)>0
$$

$$
f^{\prime}(27)<0
$$

$$
\begin{aligned}
f(x) & =12 x^{2 / 3}-4 x \\
f(0) & =0-0=0 \\
f(8) & =12(\sqrt[3]{8})^{2}-4(8) \\
& =12(4)-32 \\
& =48-32 \\
& =16
\end{aligned}
$$

Since f^{\prime} changes from positive to negative at $x=8$
(First Derivtest) (5) Justification fore or $f^{\prime}(x)=8 x^{-1 / 3}-4 \quad f^{\prime \prime}(8)=\frac{-8}{48}<0$ So, f has a local max of $y=16$ at $x=8$. $f^{\prime \prime}(x)=\frac{-8}{3 \sqrt[3]{x^{4}}} \quad\left(\begin{array}{l}\text { Second Deriv lest) }\end{array}\right.$
(c) Find the x - and y-coordinates of all relative minimum points. Justify.
f has a local min of $y=0$ ar at $(0,0) x=0$
Since f^{\prime} changes from negative to positive at $x=0$.
(First Deriv Test)
Second Deriv Test cannot be used since

$$
f^{\prime \prime}(0)=\frac{-8}{0} \text { (undefined }
$$

(d) Find the intervals on which f is concave downward. Want $f^{\prime \prime}(x)<0$

Finding $f^{\prime \prime}$

$$
f^{\prime}(x)=8 x^{-1 / 3}-4
$$

Method 1 \qquad Method 1: find pi. vs \& test intervals.

$$
\begin{aligned}
& f^{\prime \prime}(x)=\frac{-8}{3 \sqrt[3]{x^{4}}} \\
& f^{\prime \prime}(x)=\text { oNE } \\
& 3 \sqrt{\prime \prime}(x)=0 \\
& 3 \sqrt[3]{x^{4}=0} \\
& x=0 \\
& x=8=0 \\
& \text { (No solutions) }
\end{aligned}
$$

Number Line Chart for $f^{\prime \prime}$

$$
\begin{gathered}
\text { easier, } \\
\text { lessfun, } \\
\text { safer }
\end{gathered} \quad f^{\prime \prime}(x)=\frac{-8}{3 \sqrt[3]{x^{4}}}
$$

x	$-f^{\prime \prime}=D N E$	
$f^{\prime \prime}$	-	-

More challenging,

$$
f^{\prime}(x)=\frac{4(2-\sqrt[3]{x})}{\sqrt[3]{x}}
$$ more fun,

more perilous

$$
f^{\prime}(x)=\frac{8-4 x^{x / 3}}{x^{1 / 3}}
$$

Quotient: $f^{\prime \prime}(x)=\frac{\left(x^{1 / 3}\right)\left(-\frac{4}{3} x^{-2 / 3}\right)-\left(8-4 x^{13}\right)\left(\frac{1}{3} x^{-2 / 3}\right)}{\left(x^{1 / 3}\right)^{2}}$ -

$$
\begin{gathered}
\text { these terms } \\
\text { Cancel iIi! }
\end{gathered}=\frac{-\frac{4}{3} x^{-1 / 3}-\frac{8}{3} x^{-2 / 3}+\frac{4}{3} x^{-1 / 3}}{x^{2 / 3}}
$$

$$
=-\frac{8}{3} x^{-2 / 3} \cdot x^{-2 / 3}
$$

Method 2: Analysis

$$
=-\frac{8}{3} x^{-4 / 3}
$$

Notice that $f^{\prime \prime}(x)<0$
for all $x \neq 0 \quad\left(f^{\prime \prime}(0)=D N E\right)$
So, f is concave down
for all $x \neq 0$
(e) Using the information found in the parts above, sketch the graph of f.

